
 
MILS Architectural Approach Supporting 

Trustworthiness of the IIoT Solutions 
 

An Industrial Internet Consortium Whitepaper 

 

Rance J. DeLong (The Open Group); Ekaterina Rudina (Kaspersky) 

   



MILS Architectural Approach Context and Overview 

 

 

 2 

1 Context and Overview ...................................................................................................... 4 

1.1 Need for Trustworthy System Operation ............................................................................. 5 

1.2 What is MILS today .............................................................................................................. 6 

1.3 How MILS Addresses Safety ................................................................................................. 7 

1.4 How MILS Addresses Security .............................................................................................. 8 

1.5 How MILS Supports Reliability, Resilience, and Privacy ........................................................ 9 

2 MILS Concepts .................................................................................................................. 9 

2.1 Centralized vs Distributed Security Architecture .................................................................. 9 
2.1.1 Domain Isolation .................................................................................................................................. 10 
2.1.2 Isolation and Information Flow Control ............................................................................................... 11 
2.1.3 Separation as a Basis for the MILS Architectural Approach................................................................. 11 

2.2 MILS Policy Architecture .................................................................................................... 12 
2.2.1 Policy Architecture ............................................................................................................................... 12 
2.2.2 Distributed Policy Architectures .......................................................................................................... 14 
2.2.3 Static and Dynamic MILS Policy Architectures ..................................................................................... 15 
2.2.4 Realization of a Policy Architecture ..................................................................................................... 16 

2.3 MILS Platform .................................................................................................................... 18 
2.3.1 Separation Kernel ................................................................................................................................ 18 

2.3.1.1 Partitioning Resources into Domains ......................................................................................... 19 
2.3.1.2 Support for Interdomain Communication .................................................................................. 20 
2.3.1.3 Security Policy Enforcement ...................................................................................................... 21 
2.3.1.4 Memory Management ............................................................................................................... 22 
2.3.1.5 Scheduling .................................................................................................................................. 23 
2.3.1.6 Periods Processing ...................................................................................................................... 23 
2.3.1.7 Minimal Interrupt Servicing ....................................................................................................... 24 
2.3.1.8 Minimal Synchronization Primitives, Timers and Watchdogs .................................................... 24 
2.3.1.9 Instrumentation ......................................................................................................................... 24 

2.3.2 Separation-Supporting Hardware ........................................................................................................ 24 
2.3.2.1 CPU ............................................................................................................................................. 25 
2.3.2.2 Memory Management Unit ....................................................................................................... 26 
2.3.2.3 IOMMU ....................................................................................................................................... 28 

2.3.3 MILS Platform Foundational Components ........................................................................................... 29 
2.3.3.1 MILS Separation Kernel (MSK) ................................................................................................... 31 
2.3.3.2 MILS Network System (MNS) ..................................................................................................... 31 
2.3.3.3 MILS Console System (MCS) ....................................................................................................... 32 
2.3.3.4 MILS File System (MFS) .............................................................................................................. 32 
2.3.3.5 MILS Extended Attributes System (MEAS) ................................................................................. 32 
2.3.3.6 MILS Audit System (MAS) ........................................................................................................... 33 
2.3.3.7 MILS Platform Interface ............................................................................................................. 33 

3 MILS Assurance and Trustworthiness for IIoT ................................................................. 34 



MILS Architectural Approach Context and Overview 

 

 

 3 

3.1 Assurance .......................................................................................................................... 34 
3.1.1 Assurance for the MILS Platform and a MILS Policy Architecture ....................................................... 35 
3.1.2 Compositional Assurance .................................................................................................................... 36 
3.1.3 Assurance Case .................................................................................................................................... 37 

3.2 Trust by design .................................................................................................................. 38 

3.3 Trust by assurance ............................................................................................................. 40 
3.3.1 Reasoning about Noninterference....................................................................................................... 41 
3.3.2 Reasoning about Static and Dynamic MILS Policy Architectures ......................................................... 42 
3.3.3 Compositional Verification for MILS-based systems ........................................................................... 45 

3.4 Assurable Kernel and MILS Platform Components ............................................................. 47 

4 MILS Evolution, Examples and Case Studies ................................................................... 47 

4.1 MILS Evolution and Key Directions for the Future .............................................................. 47 
4.1.1 A Whirlwind Tour of MILS 1980-Present ............................................................................................. 47 

4.1.1.1 Pre-MILS Era 1980 ~ 1999 .......................................................................................................... 48 
4.1.1.2 Classic MILS Era 2000 ~ 2007 ..................................................................................................... 49 
4.1.1.3 Modern MILS Era 2008 ~ 2012 ................................................................................................... 49 
4.1.1.4 Progressive MILS Era 2012 ~ Present ......................................................................................... 50 

4.1.2 Variations on the MILS Platform .......................................................................................................... 50 
4.1.2.1 Distributed MILS Platform .......................................................................................................... 50 
4.1.2.2 Dynamic MILS Platform .............................................................................................................. 52 
4.1.2.3 Adaptive MILS Framework ......................................................................................................... 53 
4.1.2.4 Heterogeneous MILS Platform ................................................................................................... 55 

4.2 MILS Case Studies for IIoT .................................................................................................. 56 
4.2.1 MILS-based security platform for railway command and control systems ......................................... 56 
4.2.2 Distributed MILS Platform for Secure Smart Grids .............................................................................. 60 
4.2.3 Adaptive MILS for Resilient ATC Remote Tower Communications ...................................................... 64 
4.2.4 Trusted Smart Phone for Enterprise and Personal Communications .................................................. 68 

4.3 Next Steps for MILS in IIoT ................................................................................................. 74 
4.3.1 MILS Platform Extensions for IIoT ........................................................................................................ 74 
4.3.2 Covering Key Safety Challenges for IIoT .............................................................................................. 75 

4.3.2.1 Increased Security Risks due to an Increased Attack Surface .................................................... 76 
4.3.2.2 Convergence of IT and OT .......................................................................................................... 76 
4.3.2.3 Pervasive Autonomy .................................................................................................................. 77 
4.3.2.4 Inadequate Regulatory Framework and Evolving Standards ..................................................... 78 

Annex A Acronyms and Abbreviations .............................................................................. 79 

Annex B Glossary .............................................................................................................. 82 

Annex C References .......................................................................................................... 87 

5 Authors and Legal Notice ............................................................................................... 96 

 



MILS Architectural Approach Context and Overview 

 

 

 4 

This paper describes the details of the MILS architectural approach, which has emerged as a 
strategy for cost-effective construction of systems requiring dependability with high assurance.  

The paper is built like a pyramid. Every chapter explains the MILS approach from a certain aspect 
up to a certain level of detail, and then sets up a base for the next chapter.  

In the first chapter, we provide the context and overview for the need for trustworthy system 
operation, explain generally what MILS is and how it addresses safety, security, privacy, 
reliability, and resilience of the systems in the industrial internet of things (IIoT). This provides a 
basic understanding of MILS for executives and business planners. 

Using this knowledge, in the second chapter we dive into MILS concepts like domain separation, 
policy architecture, MILS platform and learn about MILS foundational components. This chapter 
is targeted to system architects and engineers. 

Building on the understanding of MILS concepts, how the components can be used in a MILS-
based system and how a MILS Platform is constructed, we explain how the architectural approach 
helps in building trustworthy systems. The third chapter describes MILS assurance methods and 
how they can be used to get trustworthiness in the IIoT environment. This chapter is required for 
technologists, prospective adopters and certification planners. To system architects and 
engineers, it provides extended knowledge on how to find a balance between trust by design and 
trust by assurance.  

The last chapter describes MILS evolution over the last 40 years and current variations of the 
MILS platform, provides MILS case studies for the IIoT, and considers how MILS can be further 
extended to be used in the contemporary IIoT environment and cover the key safety challenges 
for IIoT. This chapter is useful to all previously mentioned audiences as it can be understood up 
to a certain extent with the knowledge obtained from any of the previous chapters. 

1 CONTEXT AND OVERVIEW 
MILS builds on and extends a long tradition of work on architectural approaches to security to 
provide methods and tools to create high-assurance architectures for secure information sharing 
and dependable systems. These approaches aim to leverage system architecture to prohibit an 
unauthorized subject from accessing or modifying sensitive information while ensuring 
authorized subjects are able to do so. A thoughtful architecture may also limit the damage that 
can result from a compromised or failed subject. 

The origin of the term ‘MILS’ was an acronym standing for ‘Multiple Independent Levels of 
Security/Safety’. Today it is used as a proper name for the approach that starts with partitioning 
the system under design into isolated compartments, or security domains. The MILS community 
today prefers the term ‘domain’ over ‘level’ because the latter implies ordering. Isolation and 
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information flow control are the only required conditions for an architectural design, while 
ordering restricts the information flow control model.1 The community has retained the name 
‘MILS’ as a well-established term that is widely understood.  

Domain separation is at the heart of MILS today, though the focus has shifted from hierarchical 
domains to mechanisms of domain separation and domain management that support any kind 
of security policy, including one that is not layered and not constrained by strict levels. 

1.1 NEED FOR TRUSTWORTHY SYSTEM OPERATION 

The foundations for MILS had appeared in the seminal separation kernel work of John Rushby 
published in 1981, distilling lessons from the security kernel developments of the 1970s, which 
he had closely studied for the UK Royal Signals and Radar Establishment. His conclusions and 
proposals were subsequently refined through his own work and that of others in the security 
community. In 1989 Rushby proposed kernels for safety, and in the 1990s the approach was 
practically adopted in the aviation safety sector as Integrated Modular Avionics (IMA) and 
partitioning real-time operating system (RTOS) kernels. By the early 2000s the name “MILS” was 
coined and a lively consortium of government customer, integrator, vendor, consultant, and 
academic participants, the MILS Initiative, came to be hosted by the Real Time and Embedded 
Systems Forum of The Open Group. Numerous sponsored research projects further refined the 
concepts and investigated the theoretical and practical aspects of MILS. 

Over the subsequent two decades new application domains for MILS have emerged, such as 
industrial automation and critical infrastructures, bringing requirements for distributed secure 
systems and trustworthy adaptive systems, and with these requirements new scope and 
challenges for MILS. Accordingly, the concepts and objectives of MILS have been expanded and 
new MILS research initiatives undertaken to extend and develop MILS theory and technology to 
meet those challenges. These efforts have always kept sight of MILS’ core objectives so as not to 
sacrifice past accomplishments. We will revisit in more detail the history and evolution of MILS 
in later sections. 

The raison d’être of MILS, from Rushby’s separation kernel concept onward, has been the need 
for assuredly secure systems, and later for assured safety and other critical properties. The ability 
to provide assurance has been a prerequisite at each step taken to advance the scope and 

                                                       
1 For example, the Bell-LaPadula access control model in computer security theory considers the lattice 

on the partially ordered set of confidentiality and clearance levels. The information flows between the 
levels are constrained according to the simple rules “no read up” and “no write down” so that a subject 
with low clearance can’t read highly confidential data, and there is no data leakage from subjects with 
high clearance to the low-level containers (like throwing a confidential document to the unclassified 
trash bin). There are some other similar models with isolation, flow control and ordering.  
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capability of MILS. The addition of a new operational capability to the MILS platform must be 
accompanied by corresponding theory, modeling, verification, and tool advances so that the 
distinctive attributes of the approach are preserved. Our understanding of how to achieve 
assurance and how to construct and present assurance artifacts for increasingly challenging use 
cases has advanced as a byproduct of pushing MILS forward to new capabilities.  

MILS sets forth a bold vision for building and evaluating critical systems from separately 
constructed and evaluated components. The intuitive security architectural design proceeds by 
decomposing a system into a “circles and arrows” diagram and to continue splitting big circles 
into other circles and arrows so that security depends on only a few trusted circles, and that 
those are trusted to do relatively simple things. The arrows represent the needed communication 
channels among the circles. The behavior of each trusted circle exhibits the local policy that it is 
trusted to enforce. This policy architecture is then implemented on mechanisms that enable 
trusted and untrusted circles to share physical resources securely. It is presumed that circles and 
arrows are cheap so that decomposition may be used liberally to simplify the trusted circles and 
their associated policies. 

1.2 WHAT IS MILS TODAY 

The MILS architectural approach is a strategy for the cost-effective construction of systems 
requiring dependability with high assurance. It is a component-based approach to the 
construction, assurance and certification of trustworthy systems. In the design and 
implementation of systems, MILS emphasizes decomposition, policy architecture, separation, 
component integration, secure sharing of computing resources, and compositional assurance.  

MILS is appropriate for systems requiring a high level of assurance for security, safety or other 
key characteristics in sectors such as automotive, avionics, industrial automation, defense and 
critical infrastructures. In terms of the IoT Security Maturity Model, the MILS approach applies to 
systems requiring the highest (formalized) level of comprehensiveness for the implementation 
of practices of the Enablement domain.2 3 

Popularly, MILS is often characterized (simply) as the use of a separation kernel to run 
applications belonging to diverse security domains, or having different levels of safety 
requirements (safety criticalities), on the same computer. The MILS Idea4 is in designing an 
intuitive logical architecture to achieve a purpose and then creating an implementation 
structured to reflect that architecture faithfully. At the operational upper level, the main 
objective is to create a bespoke logical component architecture intended to achieve a specific 

                                                       
2 [CEH+20] IoT Security Maturity Model: Description and Intended Use White Paper.  
3 [CHRZ19] IoT Security Maturity Model: Practitioner’s Guide.  
4 [Rus07] John Rushby. Compositional Certification for MILS. HCSS, 2007. 
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purpose with associated properties. At a foundational lower level, focus shifts on a technology 
intended to achieve partitioning, separation and secure resource sharing on which to realize the 
component architecture.5 

“Modern MILS”6 should first be characterized as the two levels mentioned above, and may be 
viewed through a “management view” and a “technical view”. The MILS management view 
stresses the use of components, a commercial marketplace of high-assurance components, and 
a cost-effective development and certification strategy. Key concepts of the MILS technical view 
include aggressive design decomposition, policy architecture with few and simple trusted 
components, a resource-sharing implementation providing strong separation, and a 
methodology of component integration to facilitate compositional assurance and certification.  

A set of standardized MILS foundational components have been defined to compose with a 
separation kernel to create the MILS Platform. The contemporary MILS Platform, supporting 
scalable distributed and heterogeneous environments and dynamically changing configurations, 
can provide an excellent platform for IIoT, enhancing trustworthiness of the five critical 
characteristics featured in the Industrial Internet Security Framework (IISF).7 The allocation of 
the verification efforts over the various trustworthiness aspects may vary according to the needs 
of a particular system or part of a system. Thanks to component-based design, compositional 
verification tools, independent evaluation of commercial MILS components, and flexible 
automated assurance case support, such variations of need or focus of trustworthiness can be 
readily accommodated.  

A key MILS objective is to encourage a competitive commercial marketplace of off-the-shelf high-
assurance components. The technologies underlying the MILS Platform and the tool chain 
supporting MILS system development must enable reasoning about the interaction of the 
components, their differential criticalities and the resulting functionality and trustworthiness 
characteristics of the composition of the components. Many details of the elaboration of MILS 
and efforts to establish MILS standards have been driven by consideration of this objective.  

1.3 HOW MILS ADDRESSES SAFETY 

In a safety-critical environment, which is characteristic of much of IIoT, a MILS approach has 
already shown its worth. In the safety partitioning of a system, the domains usually represent 
applications, perhaps at diverse levels of safety criticality. If the failure of one application, such 
as flight control on an aircraft, could cause severe damage, viz. the loss of the aircraft, the 

                                                       
5 [RD07] John Rushby and Rance DeLong. Compositional Security Evaluation: The MILS Approach. ICCC, 

2007. 
6 [BDRS08] MILS Component Integration and several John Rushby MILS presentations in 2008. 
7 [IIS16] Industrial Internet Security Framework Technical Report. 
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application requires high assurance for safety; if the failure of another application would cause a 
minor nuisance (e.g. loss of the passenger entertainment system), the application does not 
require high assurance for safety. However, a failure of the entertainment system must never 
result in the loss of the aircraft. Applications with high safety-assurance levels have more 
stringent process requirements (planning, development, verification) than applications with low 
safety assurance levels.  

Safety-critical sectors such as avionics or automotive have employed partitioning techniques to 
improve safety and enable certification of the integrated systems. Resource isolation, fault 
isolation and enforcement of timing constraints all contribute to safe behavior. An example of 
safety-rated separation is the approach defined by ARINC Specification 653.8 It describes 
Partitioning Operating Systems (POSs) that support applications with shared access to critical 
resources within integrated systems. They implement the separation in space and in time for 
independent execution of applications in domains, or partitions in the terminology of ARINC 653. 
Within each partition, multitasking is allowed. The API decouples the real-time operating system 
platform from the application software and provides services to manage partitions, processes 
and timing, as well as partition and process communication and error handling. The partitioning 
environment can implement this using a hypervisor to run partitions in separated virtual 
machines, but this is not the only possible implementation approach. 

1.4 HOW MILS ADDRESSES SECURITY  

Security architectural design starts with identifying the trusted components, the local policies 
and the communication channels, then choosing trusted components to minimize their 
complexity and their associated policies.  

Component-based security approaches aim at creating system architectures that deny 
unauthorized parties’ access to sensitive information while ensuring authorized parties are able 
to do so. The authorization scheme is implemented by security mechanisms that monitor access 
attempts. The authorization policy, based on the classification of informational objects and the 
clearance level of the subjects accessing them, separates the environment into security domains 
and prevents information leakage or tampering. Fault isolation constrains the compromised or 
failed subject from inadvertently disclosing the information or causing damage to it.  

When technological advances reduced performance concerns, isolation and separation were 
used as independent mechanisms to support secure and reliable execution. More recent 
technologies such as hardware support of virtualization facilitate generic domain separation so 
they are used to implement the security mechanisms or to mitigate their imperfections (such as 
security flaws or attack exposures). 

                                                       
8 [Aer19b] ARINC Specification 653: Avionics Application Software Standard Interface. 
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1.5 HOW MILS SUPPORTS RELIABILITY, RESILIENCE, AND PRIVACY 

If domains do not need to interact, they should remain isolated to mitigate the effects of failures 
and attacks, including propagating and cascading failures, to increase reliability.  

Reliability is the ability of a system or component to perform its required functions under stated 
conditions for a specified period. Applying domain-based security and safety controls enables 
independent measurement of the system’s availability and simplifies support. Identification of 
components critical for system functionality and their separation from the non-critical 
components therefore facilitates the assurance of reliability and availability by establishing clear 
dependencies on influencing factors and determining the likelihood of failure. 

If the system design supports backing up the domains or redundant implementation of their 
functions, the system may be reconfigured after the failure, adapting to the hazardous events 
and providing resilience.  

Resilience requires anticipation of dynamic adversarial conditions, the determination of how to 
withstand them, how to recover after they have taken place and how to adapt where possible to 
the predicted changes in technical, operational or threat environments.9 Trustworthy adaptation 
requires that a system can be dynamically reconfigured at runtime without compromising the 
robustness and integrity of the system. While MILS initially is a paradigm for rigorously developed 
and assured composable systems with a static configuration of domains, adaptive MILS is an 
extension to this paradigm with adaptation mechanisms for safe and secure reconfiguration of 
the domains within the constraints of a configuration policy. 

MILS also facilitates privacy. Separation and isolation may segregate information between 
different domains based on ‘need to know’. Guaranteed domain isolation ensures non-leakage 
of the private data to unauthorized agents. 

2 MILS CONCEPTS 

2.1 CENTRALIZED VS DISTRIBUTED SECURITY ARCHITECTURE 

A centralized approach to security architecture has conceptual simplicity and a clearly identified 
reference validation mechanism. Such was the security kernel approach, in which the kernel was 
intended to be the sole trusted arbiter of the system wide security policy. In practice, it was 
necessary to create trusted components in addition to the kernel to handle operationally 
essential functions that required exemption from the kernel’s security policy. Such components 
were given special privileges, sometimes more broad than necessary, to carry out their function. 

                                                       
9 [RPG+19] Draft NIST Special Publication 800-160 VOLUME 2. 
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The attempt to enforce a single security policy over the entire system usually fails because trust 
must be distributed over components in different system layers. Even minimal use of shared 
resources, such as printers, backups, networked file systems and authentication services, must 
violate the central security policy because of the different functions they are required to perform. 
The security kernel taken together with these trusted components represents the trusted 
computing base (TCB) that enforces the resulting security policy. Much of the effort to develop 
and assure a security kernel to enforce a complex policy is wasted because of the quantity of 
functionality in the TCB that is privileged to violate kernel policy to be reasoned about, 
particularly if a methodology to reason about combined policies is lacking. 

Moreover, some applications must not adhere to the security policy for safety reasons or due to 
the need for continuous execution, creating exceptions. Kernelized architectures cannot 
guarantee safety when the application cannot tolerate the delays caused by interposing 
centralized security policy enforcement into its execution.  

A system where trust does not rely upon a central mechanism is a functionally distributed system. 
Its functions are provided by individual subsystems that are physically or logically separated from 
each other and provided with only limited channels for communication. A distributed 
architectural design of a trustworthy system, achieved through domain separation, is the key to 
overcoming the weaknesses of a centralized approach. Such a design presumes, and is dependent 
on, reliable establishment and strict enforcement of the architectural design, since critical 
properties of the design are derived from the architecture. The isolation of necessarily trusted 
components can both forestall their compromise and limit the damage to the rest of the system 
that could result from their compromise.  

2.1.1 Domain Isolation  

A domain is a unit of separation created and maintained in such a way that a system architecture 
constructed from a collection of interacting domains accomplishes its objectives, both 
functionally and in support of system trustworthiness. The reliable way to guarantee 
trustworthiness objectives is to isolate domains and support the minimally required 
communications among them on the basis of a default-deny information flow control policy. That 
is, there is no information flow among components that is not explicitly granted in the policy 
architecture. Strict isolation splits domains, preventing interaction. Effective isolation is a 
prerequisite for the enforcement of any access control or information flow policy. 

Isolation of applications, such as by running them on different standalone computers, is the 
ultimate way to ensure non-interference. As no data is exchanged among the computers, the 
state of each application is determined only by its own execution and thus it is secure. Similarly, 
as the application doesn’t produce external data or control signals, it can’t affect the 
environment, or the applications running on other computers, so it is also safe. This is a good 
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starting point. But a system is a collection of cooperating applications, and cooperation is the 
result of specific beneficial interactions, not unregulated interference, among applications. 

Isolating independent parts dramatically decreases system complexity. A proper design can 
reveal the system functions that do not depend on each other and assign them to separate 
domains. Resources or functions that are tightly coupled may be assigned to the same domain 
provided that there is no risk associated with information being freely shared among them. 
Separation identifies the loosely coupled components or sets of components, reveals their 
connections and makes these connections explicit. How to achieve the separation depends on 
many factors.  

2.1.2 Isolation and Information Flow Control 

Minimally required communications among domains must be supported. This distributes the 
system as a set of domains communicating through explicitly defined interfaces. Explicit 
communication links enable control of information flows between domains. This is a primary 
function of the foundational components of the MILS platform, and first among them the 
separation kernel.  

A separation kernel is a specific kind of security kernel that is limited to the enforcement of 
policies of isolation and information flow control among exported resources by management of 
shared physical resources to create an environment that is indistinguishable from that provided 
by a physically distributed system. It must appear as if each domain (regime) is a separate, 
isolated machine and that information can only flow from one machine to another along known 
external communications lines.10 The implementation of a separation kernel is the aggregated 
hardware, firmware and software that together implements an abstract machine that performs 
this function. The separation kernel is the key foundational component for a MILS-based system. 

One approach to implementing communications among domains is to define communication 
objects, exported resources associated with components or domains. Communication objects 
can be shared between components according to the security policy.  

The combination of strict isolation with an information flow control policy is referred to as 
domain separation, or simply, separation, which lies at the heart of MILS today. 

2.1.3 Separation as a Basis for the MILS Architectural Approach 

Component-based approaches aim at creating system architectures that channel information 
only to the components that need it to perform their function. The policy represented by the 
architecture separates the computing resources into security domains and prevents information 

                                                       
10 A quote from [Rus81].  
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leakage or tampering by using information flow control rules. Isolation of resources contains the 
potentially adverse effects of compromised or failed subjects from inadvertently disclosing 
information or causing damage to other resources.  

The implementation of strong separation comes at a price in physical resources (to create 
physical separation) or at a price in energy for additional computing resources (to maintain logical 
separation with a support of appropriate technologies). As technological advances in 
microprocessor capacity reduce the performance concerns, separation can be used to support 
secure and reliable execution in embedded systems. More recent technologies to facilitate 
isolation and separation (such as hardware support of virtualization) can also be used to 
implement the security mechanisms or to increase their performance and robustness, extending 
the applicability of the MILS platform.  

A MILS Platform is a composition of foundational components, created from hardware and 
software, that provide isolation and information flow control over a set of exported resources 
required for the implementation of a MILS policy architecture. The MILS Platform has its own 
distinct architecture whereby the foundational components are combined to achieve the 
properties that must be provided by the composition of those components. 

The MILS Platform has the dual role of:  

• creating abstractions of physical or other lower-level resources and exporting resources 
corresponding to these abstractions and  

• enforcing policies of isolation and information flow control seamlessly over the set of 
exported resources according to the policy architecture that its foundational components 
have been configured to realize.  

Architecture enforcement is achieved in practice through mechanisms that enforce domain 
isolation and information flow control. 

2.2 MILS POLICY ARCHITECTURE 

2.2.1 Policy Architecture 

Architecture alone does not guarantee trustworthiness. To reason about trustworthiness, we 
need to conduct assurance procedures, which require properly defined assurance argument(s). 

An assurance argument is a set of claims that assert that the system is acceptably assured relative 
to a trustworthiness aspect (such as safety or security). This set is usually well-structured and 
supported by the criteria, assessment scope, assumptions and limitations, list of the undesired 
events, mitigations for undesired events and the evidence, intended to justify that concern is 
properly addressed. The process of defining assurance arguments and reasoning about the claims 
comprising these arguments comprise the core of assurance procedures. 
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Assurance arguments may be defined for the whole system and for its separate parts. The ideal 
approach is to decompose a system and consider the parts and assurance arguments related to 
these parts separately. If the system assurance argument does not decompose on architectural 
lines, it is difficult to evaluate system behavior because the assurance procedure needs to reveal 
hidden connections and investigate subtle behavior.  

The critical task for the system architect is to construct a system so that assurance decomposes 
along structural lines. The MILS approach addresses this issue. Policy architecture accumulates 
the knowledge about the system structure, components, trust given to these components and 
their possible communications. The strength of the guarantee that the architecture is properly 
implemented lends strength to the architecturally aligned assurance claims. 

The MILS policy architecture is a set of abstract entities (active subjects, passive objects, 
communication primitives describing permitted interactions) that represents the system 
decomposition based both on the functional purpose of the system and requirements on the 
trustworthiness aspects and assurance.  

MILS policy architecture is usually represented with a “boxes and arrows” diagram (or “circles 
and arrows”, as shown on the Figure 1). Circles encapsulate data, information, or control. Arrows 
are channels for information flow. Some circles are marked as trusted to enforce local policies 
for the communications control. The trusted ones should be as simple as possible, so the architect 
must decompose the policy architecture to achieve this.  

The MILS approach has two phases: first, the development of a policy architecture that 
accomplishes a desired goal, and, second the implementation of that policy architecture on a 
platform that manages shared resources in a way that the fundamental assumptions made by 
that policy architecture are satisfied. 

The MILS approach encourages a vigorous decomposition of a function into an abstract policy 
architecture that has components that exhibit simplicity and singleness of purpose, and that 
embodies the principle of least privilege, permitting only the necessary interactions among the 
components. Figure 1 illustrates a simple policy architecture comprising five components and 
their permitted interactions. It also depicts a component, C6, that is independent of the other 
components of the policy architecture, on which it has no effect and vice versa. One of the 
components, C1, is a trusted subject.11 The local policy enforced by C1 determines what 
information will flow to C4, and in what form, of the information C1 receives from C2, C3 and C5. 

                                                       
11 [CITa] CITADEL Project introduction to MILS. 
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Figure 1: Example of MILS Policy Architecture 

For example, C1 may anonymize usage information from applications C2, C3 and C5; or, C1 may 
be a “downgrader” that aggregates potentially classified information received from C2, C3 and 
C5 and filters it to create an unclassified summary. The non-interacting application С6 may be 
the backup that stores information independently in a way that does not allow any damage to it 
in case of cyberattack. 

2.2.2 Distributed Policy Architectures 

A distinction must now be made between the notion of a MILS policy architecture as a 
conceptually distributed system that is implemented on a single computer, and that of a MILS 
policy architecture implemented across a physically distributed system. In Distributed MILS the 
MILS platform comprises a special network of MILS computer nodes that is accompanied by tools 
to support the development and analysis of policy architectures that will be deployed on such a 
platform. Here, the elements of the policy architecture may run on different MILS nodes subject 
to constraints attached to the design and constraints imposed by the physical attributes of the 
networks and nodes making up the platform. The example policy architecture of Figure 1 is 
shown deployed over two distributed MILS nodes in Figure 2. 
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Figure 2: A distributed MILS policy architecture deployment 

A new MILS foundational component, the MILS networking system (MNS), is added to the 
separation kernel (SK) to create a node of the new foundational plane. The subjects are 
distributed over the nodes. Separation kernel and MILS networking system form the distributed 
MILS foundational plane over which the policy architecture is implemented. 

2.2.3 Static and Dynamic MILS Policy Architectures 

Since the early MILS platforms were based on statically configured separation kernels, such MILS 
implementations provided only for fixed runtime policy architectures on a single computer. The 
only variation in the policy architecture possible at runtime was limited to a small set of 
predefined modes, the resources for which were statically configured. A change to a different 
policy architecture required a restart. 

Dynamic MILS makes possible more extensive or even unbounded runtime change to a policy 
architecture, or the addition or deletion of physical resources to the platform in support of policy 
architecture changes. This is supported by a dynamic MILS platform composed from dynamically 
reconfigurable foundational components and is governed by advanced techniques and tools for 
modeling and analysis of dynamic architectures that enables it to be done safely (as explained 
below in 3.3.2).12 

                                                       
12 [CST18] Cimatti. Formal Specification and Verification of Dynamic Parametrized Architectures.  
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2.2.4 Realization of a Policy Architecture 

The realization of the policy architecture, illustrated in Figure 3 as a configuration of a MILS 
Platform, must guarantee that components and communication channels do not eхchange 
information or interfere in a way that is not explicitly represented in the architecture even though 
their implementation may share physical resources such as processors, memory, mass storage 
and networks. 

The implementation of a policy architecture is accomplished by refining the components and 
connectors of the policy architecture down to MILS platform exported resources. The basic 
elements of the policy architecture, such as subjects, objects and permitted communication 
primitives, are resources exported by the hardware and software of the MILS platform 
foundational components. These components enforce the system architecture by isolating the 
resources they export and controlling the interactions of the entities they represent. Together 
they implement a foundational framework for integration of the operational components of a 
policy architecture.  

 

Figure 3: Realization of MILS-based system based on the Policy Architecture 

The realization of policy architecture is referred to as an operational plane. A MILS-based system 
may implement one or more MILS policy architectures, each an independent graph component 
as shown in Figure 4. Distinct policy architectures may be considered to be independent 
operational planes. 
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Figure 4: Isolated subsystems as distinct policy architectures  

As policy architectures vary from case to case, using a common integration framework for 
building such systems is needed.  

A MILS platform is the set of hardware and software components that provides the capacity for 
entity isolation and controlled information flow necessary for the implementation of a MILS 
policy architecture. A MILS platform may host multiple policy architectures. 

A MILS platform must be capable of supporting the functionality of the system and assuring 
system trustworthiness. These high-level demands transform into a complex set of interrelated 
technical requirements for hardware and software components. Incorrect assumptions about the 
implementation may lead to unexpected behavior of these components and system compromise. 
Balancing the complexity of policy architecture and the structure of components underlying the 
platform is the essential task for an architect. 

Different sources provide different ways of decomposing the hardware and software varieties 
comprising the MILS platform. 
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2.3 MILS PLATFORM 

2.3.1 Separation Kernel  

A security kernel is a combination of hardware and software that implements a reference monitor 
for a system-wide security policy model.13 After studying several security kernel projects, 
including UCLA secure Unix,14 MITRE kernel,15 KSOS16 and ACCAT Guard,17 in his 1981 paper 
Rushby criticized the security kernel approach while observing the simplicity of physical 
construction of high-assurance critical systems of the day. Rushby contends, “the overall security 
of a [physical] distributed system rests partly on the physical separation of its components and 
partly on the critical functions performed by some of those components”, and proposed the 
separation kernel as a new kind of security kernel with the role to “re-create within a single 
shared machine, an environment which supports the various components of the system, and 
provides the communications channels between them, in such a way that individual components 
of the system cannot distinguish this shared environment from a physically distributed one.”18 

Rushby proposed a separation kernel as a new kind of security kernel with the role to “re-create 
within a single shared machine, an environment which supports the various components of the 
system, and provides the communications channels between them, in such a way that individual 
components of the system cannot distinguish this shared environment from a physically 
distributed one.” The partitioning kernel19 is a kind of separation kernel for integrated modular 
avionics and concerns safe separation largely based on an ARINC 65320 style separation scheme. 
We will use the term separation kernel for both. They act as reference monitors for a separation 
policy in the system.  

Separation kernels provide features to enforce isolation and information flow control. They must 
be small enough to allow formal verification of their correctness. Functionality may slightly vary 
depending on the intended use of a system built using the kernel.  

Currently, a separation kernel is not the same as an operating system kernel. Some of the low-
level functions implemented by an OS kernel may also support separation of domains but it also 
typically provides many features not included in a separation kernel. On the other hand, a 

                                                       
13 [And72] Anderson. Computer Security Technology Planning Study. 
14 [PKK+79] Popek. UCLA secure UNIX. 
15 [Sch75] Schiller. The design and specification of a security kernel for the PDP-11/45. 
16 [MD79] McCauley, Drongowski. KSOS—the design of a secure operating system. 
17 [Woo79] Woodward. Applications for multilevel secure operating systems. 
18 [Rus81] Rushby. Design and Verification of Secure Systems. 
19 [Rus99] Rushby. Partitioning in Avionics Architectures: Requirements, Mechanisms, and Assurance.  
20 [Aer19a] ARINC Specification 653, Part 0 - Overview of ARINC 653.  
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separation kernel has information flow control policy and enforcement as essential features. 
Currently, a separation kernel is not a “kernel” in the conventional sense but a combination of 
hardware technologies and software components that enforce separation in an assured way. The 
requirement for assurance is the distinguishing characteristic of a MILS separation kernel.  

Separation kernels enforce spatial and temporal partitioning of domains, but allow them to 
communicate in a controlled manner. The extent to which isolation is provided by each of these 
types of separation depends on the system purpose and particular architectural design. 

Spatial partitioning maintains data separation, information flow control and fault isolation. Data 
separation means that each domain is deployed as an isolated exported resource. Applications 
in one domain can neither implicitly affect data in other domains nor control applications and 
devices in them. Information flow control enforces only properly authenticated information flow 
between domains. Fault isolation restrains failure propagation from one domain to others. 

Temporal partitioning maintains scheduling of execution of different domains at distinct times 
and supports measures to prevent leakage of information between domains over time.  

Sanitization ensures that resources allocated to a domain or temporary data areas used by a 
domain are cleared when the resource is used to process data in other domains, thus enforcing 
safe processing of information from various domains at different times on the same hardware 
resources (so-called periods processing). Sanitization also helps mitigate cold-boot attacks and 
other attacks on confidential data within domains. 

Thus, the relevant basic functionality of the separation kernel includes: 

• partitioning resources into domains, 
• support of interdomain communication, 
• separation policy enforcement, 
• memory management, 
• scheduling, 
• periods processing with physical resources, 
• minimal interrupt servicing of devices by the kernel, passing interrupts on to be handled 

by subjects, 
• essential synchronization primitives, timers and watchdogs and 
• instrumentation (if required). 

2.3.1.1 Partitioning Resources into Domains 

Partitioning of exported resources into domains and providing seamless connections among 
resources of diverse types is the cornerstone feature of the MILS Platform. Each foundational 
component of the MILS Platform manages a different kind of physical resource and exports 
distinct kinds of exported resources constructed from those physical resources. 
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A separation kernel must support a consistent partitioning for the resources across the system 
layers, from hardware to applications. This is why the implementation of separation kernels 
remained impractical until microprocessors became capable of hosting multiple applications 
concurrently and separating them robustly and efficiently, using, for example, memory 
management units and hardware virtualization features.  

The Radio Technical Commission for Aeronautics (RTCA) DO-297 guidance for Integrated Modular 
Avionics (IMA) developers, application developers, integrators and certification applicants 
defines the aim of “robust partitioning” to provide a level of functional isolation and 
independence equivalent to that of a federated system implementation. A partitioning analysis 
demonstrates that “no application or subfunction in a partition could affect the behavior of a 
sub-function or application in another partition in an adverse manner”. The guidance given to 
achieve partitioning splits validation, verification, configuration management and certification 
processes into tasks done at the application level, the platform level, and the system level.21 

2.3.1.2 Support for Interdomain Communication 

Separation kernels provide the ability to define authorized channels between domains for 
interdomain communication. Data isolation can be contravened only through these channels, 
implementing the default-deny principle. 

Different MILS systems and platforms implement interdomain communications using different 
communication models and transport mechanisms. One variant is a message-passing system 
conceptually similar to ARINC 653 ports. Another is shared memory buffers with synchronization 
mechanisms. The only requirement imposed by MILS is support for distinguished effectively 
unidirectional channels for data communication. However, as Architecture Analysis and Design 
Language (AADL) has become the de facto specification language for MILS, we recommend using 
a mechanism providing a semantically compatible model. An abstract convention established in 
MILS research has been to use ports that are located in the sender, readable and writable by the 
sender, but only readable by the receiver. Synchronous communication may be preferable in 
some applications, as asynchronous mechanisms require allocation and management of buffers 
(by the application) and provision of synchronization primitives (ideally by the kernel) or other 
flow control.  

The complexity of the separation kernel implementation should be limited to enable verification. 
This limit is determined by the available verification methods and will change as verification 
technology advances.  

                                                       
21 [RTC05] RTCA SC-200 / EUROCAE WG-60, DO-297: Integrated Modular Avionics (IMA). 
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The performance of information exchange is constrained by the need to check and enforce the 
security policy for the communications. Timing or other non-functional requirements may also 
restrict the available communication capacity. A balance therefore needs to be found between 
performance and security and other non-functional requirements.  

Lastly, to maintain efficient interaction among applications in the separated domains, the MILS 
platform should provide appropriate communication primitives, such as “Unix domain” sockets 
as a protected library or implemented by the separation kernel. Communications among 
domains, especially on the same computer, may be very intensive as a result of the MILS principle 
of decomposition, and therefore should have an efficient implementation. Moreover, in a 
Distributed MILS system communicating subjects may be deployed on different computers, 
provided that the needed throughput and latency requirements of the applications can be met. 
The applications should not need be modified for a distributed deployment, so that deployment 
flexibility is maximized. Inter-subject communication primitives should be transparently backed 
by appropriate higher-level networking protocols and predictable network implementations. A 
draft MILS Platform API based on POSIX, including communication and synchronization 
primitives, has been produced by the MILS Platform API Working Group of The Open Group and 
is under public review. 

The implementation of Distributed MILS and of the inter-subject communication between MILS 
nodes involves the provision of a “communication stack” and access to specialized networking 
hardware for deterministic network communication as part of the MILS Networking System 
foundational component. Its responsibilities include time-sensitive networking to create the 
MILS backbone for inter-subject communication in a Distributed MILS system and best-effort 
communication over conventional networks. 

2.3.1.3 Security Policy Enforcement 

Relative to a conventional operating system kernel, taking the decision engine for a system-wide 
access control security policy out of the separation kernel decreases its complexity and at the 
same time enables enforcement of arbitrary access control security policies by decision engines 
outside of the separation kernel. Following the reference monitor concept, reference validation 
mechanisms (RVM) for multiple policies are compatible with a common policy architecture 
pattern, one that provides for the tamperproofness and non-bypassability of the RVM.22 The 
isolation and information flow control policies of the separation kernel are used to establish and 
enforce the policy architecture within which the RVM is applied to the exported resources of the 
MILS Platform. 

                                                       
22 According to [And72] an RVM must be tamperproof, always invoked (non-bypassable), and “small 

enough to be subject to analysis and test the completeness of which can be assured” (i.e. assurable). 
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Access control enforcement requires the availability of security-relevant metadata or attributes 
to the security policy decision engine. For this reason, the definition of the MILS Platform includes 
a foundational component called MILS Extended Attribute System (MEAS).23 The purpose of this 
system is to bind arbitrary attributes optionally to the exported resources of other platform 
components so that these resources may serve as the controlled entities of attribute-based 
access control policies through their RVMs. The resources exported by the MEAS component are 
the attribute metadata bound to other exported resources. The MEAS is an integral part of the 
MILS Platform because it must provide for strong binding and integrity of the attribute metadata 
with assurance commensurate with that provided for the resources to which they are bound. The 
separation kernel and the MEAS provide the trustworthy ability to include arbitrary security 
policy enforcement mechanisms within a policy architecture implemented on the MILS Platform. 

In a network context the security-relevant metadata often comprise part of the message content. 
To retrieve it involves message parsing and supporting the security context for the system. This 
must be done in a trustworthy way so as not to compromise the purpose of the MEAS or the 
validity of policy decisions rendered on the basis of the metadata. These considerations should 
come into play as part of the design of complete MILS Networking System (MNS) and MEAS 
components. Except for possible minor extensions, no changes to a functionally complete 
separation kernel should be necessary to implement the MNS and MEAS, and thereby to support 
RVMs for arbitrary attribute-based access control policies. Support for this claim may be found 
in the success of implementation of the MNS for Distributed MILS without kernel changes for two 
separation kernels on two different projects.  

2.3.1.4 Memory Management 

Data separation requires memory address spaces of each partition to be independent of others. 
This requirement may be covered by different hardware-assisted features together with strongly 
assured memory management algorithms implemented by the separation kernel.  

Memory management techniques within the kernel should be conservative so that the kernel 
cannot be the source of an unexpected memory error to a subject. Practices such as dynamic 
memory reallocation within the kernel increase the complexity of the kernel and create such a 
possibility. This is inevitable in a dynamically reconfigurable kernel and must be appropriately 
dealt with in kernel assurance. The kernel may provide the ability to share memory objects 
among subjects or among partitions but dynamic management of such shared memory should 
be delegated to the MILS application and the associated risks managed by the application 
developer. 

                                                       
23 The MILS Extended Attribute System has not yet been implemented. 
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2.3.1.5 Scheduling 

Processor schedules are determined by requirements of temporal partitioning and timing 
requirements of components and policy architectures such as end-to-end latency of inter-subject 
communication paths. Applications running on the MILS platform may require real-time 
execution or pose other constraints on schedules. For example, partitioning kernels used in 
avionics typically use a table-driven scheduling algorithm, which is well suited for safety-critical 
and hard-real-time systems as it enables checking the feasibility of the scheduling in advance. 
Other approaches such as fixed-priority preemptive scheduling, or dynamic planning-based 
scheduling, or dynamic best-effort scheduling are not excluded; however, the requirement of 
keeping the algorithms as simple as possible remains. 

There are scheduling considerations that are complicated by MILS. Unlike many previous 
partitioned systems, which have relatively few partitions on a single processor, MILS encourages 
aggressive decomposition that could result in hundreds or thousands of subjects on a single 
processor and far greater numbers in a Distributed MILS system. The possibility of 
communications among subjects is established by the policy architecture, and the completion of 
any communication cycle requires both the sender and the receiver to execute. The latency of 
communication, even on a single processor, is therefore influenced by scheduling. The scheduling 
algorithm should take this into account so that overall execution of the system can be 
predictable. There are proposed separation kernel features to ameliorate this complication.24  

In a Distributed MILS system, the configuration system must consider any latency requirements 
specified for a policy architecture when that architecture is being deployed on the Distributed 
MILS Platform, as network latency is combined with scheduling latency. The schedules created 
for the various nodes of the D-MILS Platform must account for inter-node inter-subject 
communication, just as the schedule for one node would do, and the runtime schedulers of the 
nodes of the platform must be synchronized so that clock drift among the nodes will not 
invalidate the global scheduling decisions. To meet end-to-end latency constraints, time-critical 
applications may require the use of networking technology, such as Time-Sensitive Networking 
(TSN) or Time-Triggered Ethernet (TTE), that allows network communications to be scheduled in 
a manner similar to processor scheduling. 

2.3.1.6 Periods Processing  

Periods processing is the processing of information from various domains (e.g., classified or 
unclassified information) at different times on the same hardware resources. Under periods 
processing, the hardware resources must be purged of all information from one processing 
period before transitioning to the next when different domains are being serviced. A separation 

                                                       
24[VF10] Velykis. Formal Modelling of Separation Kernel Components. 

https://www.its.bldrdoc.gov/fs-1037/dir-019/_2720.htm
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kernel implementation requires particular attention to the context switching between domains 
when the resources being used to process a domain are re-allocated to process another domain. 

2.3.1.7 Minimal Interrupt Servicing 

An interrupt can occur at any time, so an interrupt handler can execute at any time. So as not to 
affect the validity of schedules, and the timing objectives they were created to achieve, each 
interrupt handler must run quickly and resume execution of the interrupted code as soon as 
possible. For some embedded systems interrupt response time must be deterministic.  

However, interrupt handlers have a lot of work to perform, and they must acknowledge the 
interrupt's receipt to the hardware. Because of these competing factors, the implementation of 
interrupt servicing by the separation kernel is a subject for aggressive optimization. Nodes with 
multiple processor cores may have a single core designated to handle interrupts that is either 
dedicated to this task or otherwise runs processes that are not time critical. 

2.3.1.8 Minimal Synchronization Primitives, Timers and Watchdogs 

A separation kernel must handle hardware traps such as timers and watchdogs and implement 
synchronization primitives to control interference and preserve correctness of legitimate 
communication. Requirements for timer management are determined by the scheduling 
constraints and use cases for the system. The resulting overhead should be contained by the 
proper implementation of scheduling mechanisms. Some applications, such as TCP protocol 
implementations, and thus all networked applications based on this protocol, use the timers and 
synchronization primitives in a predictable way. The information about the intended use of the 
system may be used for minimization of overheads and optimization of schedules. 

2.3.1.9 Instrumentation  

Embedded system components commonly record operational health and status data to support, 
recovery, post-operation analysis and debugging (instrumentation). If a single mechanism is used 
to manage both instrumentation and audit data, then the confidentiality and integrity of 
collected data must be protected as appropriate.25 

2.3.2 Separation-Supporting Hardware 

Many operating systems and separation kernels use hardware-assisted CPU and Memory 
Management Unit (MMU) virtualization to efficiently implement proper separation of resources, 
but they don’t have to. Hardware requirements for a MILS-based system depend on the MILS 
policy architecture and the external interfaces as determined by the purpose of the system and 
its functionality and performance requirements. Generally, spatial separation features rely on 

                                                       
25 [SKP07] Protection Profile for Separation Kernels in Environments Requiring High Robustness (SKPP). 
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common hardware protection mechanisms such as MMUs and Input/Output MMUs (IOMMUs). 
Separation kernels use hardware timers to trigger interrupt-driven context switching and periods 
processing of processor resources for temporal separation. 

These hardware elements play an indispensable role for an efficient and robust separation kernel 
implementation. Other hardware features may be useful for achieving specific additional 
properties of the separation kernel or MILS platform as a whole. Reliability mechanisms may help 
to mitigate hardware failures or to meet quality-of-service uptime requirements. In-depth 
defenses like trusted distribution, authenticated boot, OS code integrity checks, secure storage 
and similar measures help to thwart low-level attacks.26 

2.3.2.1 CPU  

CPUs execute code, and in MILS-based systems, they support spatial and temporal separation. 
This applies particularly to the interaction with register files, multi-level caches and system 
memory to which requirements of periods processing apply. 

While MILS features may be implemented in varying ways, the support of separation at the level 
of CPU(s) or System-on-Chips (SoCs), facilitate easier implementation and more predictable 
system behavior. One of the technologies boosting the rise of MILS was hardware-assisted 
virtualization because it enables separation to be more effectively and efficiently achieved.  

A key function of MILS hardware support is separation of privileges as reflected in the system 
policy architecture. A simple executive or an RTOS may provide only one privilege level. Thus, in 
effect there is only one domain. Traditional operating systems rely on two privilege levels, kernel 
and user, to separate applications from the kernel. If full processes are supported (rather than 
just multi-tasking or threads) then applications are separated from one another to the extent 
provided by the process model. Virtualization, which is an ongoing trend in embedded 
Commercial-of-the-Shelf (COTS) microprocessors and SOCs conceptually adds a new hardware 
privilege level, giving a conventional operating system, that would normally have unfettered 
control of the hardware, indirect or constrained access to the hardware. In this case, the 
operating system depends on another piece of software, called a hypervisor or virtual machine 
monitor (VMM), to manage the hardware and to perform periods processing that provides the 
operating system with a hardware view that corresponds to the machine without the added 
privilege level. This makes it possible to run multiple, possibly different, unmodified operating 
systems on a single processor, and to partition hardware resources on a SoC between operating 
systems.  

                                                       
26 [BTL+14] Blasum. EURO-MILS Whitepaper; [EURa] EURO-MILS project. 
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Processors with multiple cores can be supported and well utilized by a hypervisor, VMM or 
separation kernel, running each at different clock frequencies to lower overall power 
consumption or to increase performance and requiring fewer context switches among virtual 
machines. Multicore systems add complexity to the platform but can enhance domain separation 
by providing an added dimension to time partitioning and the control of illicit information flow.27  

For multicore processors, the hypervisor is responsible for creating a virtualized environment for 
each core, configuring memory protection required for each domain, and loading and running 
the relevant software. The increasing deployment of the MILS-based systems on single-core 
processors, and the increasing commercial availability of multicore processors, has led to the 
convergence of these two technology trends, resulting in the requirement to extend the MILS 
architecture to exploit multicore performance security-critical systems.28 

There are some significant challenges to using modern, state-of-the-art, and highly integrated 
COTS microprocessors as a base for special purpose, highly-assured systems, including: 

• may not provide adequate visibility and debug features to reveal internal functionality, 
• are less predictable with respect to timing due to the interaction of advanced features, 
• may have programmable configuration capabilities available to application software and 
• may share resources across multiple cores and devices.29 

Some MILS applications require robust consideration of system failure, anomaly detection, 
correction and recovery. To do so, mitigations and protections at a level above the functional 
elements containing the microprocessor(s) or SoCs can be used to address the lack of design 
assurance for highly integrated, complex, nondeterministic hardware. The trade-offs between 
the complexity and attainable level of assurance for the platform and its efficiency and natural 
support of a multi-domain environment should be evaluated individually for each MILS-based 
application.  

2.3.2.2 Memory Management Unit 

A memory management unit (MMU) manages memory references. It translates virtual memory 
addresses to physical ones; it can control access to certain memory areas too. It is usually 
implemented as part of the central processing unit, but it can be a separate integrated circuit.  

Whenever a process wants to access a virtual memory address, the MMU performs a translation 
to find the corresponding physical address in main memory. The translation lookaside buffer 
(TLB) in each CPU core stores most of the recent translations to speed up the memory access. 

                                                       
27 It is not all good news, as multicore platforms do have low-level shared hardware resources. 
28 [Par16] Parkinson. Applying MILS to multicore avionics systems. 
29 [MLGM11] Mahapatra. Microprocessor Evaluations for Safety-Critical, Real-Time Applications. 
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However, whenever a TLB miss occurs, the MMU needs to walk the page tables (PTs) of the 
process (also stored in main memory) to perform the translation. To improve the performance 
of that MMU walk, the PTs may be cached in fast data caches much like process data is cached. 

Virtualization implies an additional level of memory addressing, requiring independent memory 
mapping onto physical address space for every domain. The translation may be organized in two 
stages such as in the ARMv8 platform for which the translation regime translates a virtual address 
to an intermediate physical address (IPA), and then from that IPA to the physical address. Or it 
may employ hardware-assisted MMU virtualization, called rapid virtualization indexing (RVI) or 
nested page tables (NPT) in AMD processors and extended page tables (EPT) in Intel processors, 
provide hardware support to virtualize the MMU. Hardware-assisted MMU virtualization has an 
additional level of page tables that map guest physical memory to host physical memory 
addresses, eliminating the need for the hypervisor to maintain shadow page tables. 

A similar solution needs to be implemented for MILS-based systems, as they require separation 
of resources including system memory into domains. The implementation may be supported by 
virtualization technology or developed from scratch. Memory mapping may be static or dynamic.  

When implementing static memory-management, a separation kernel supports static entries in 
the MMU’s translation table, which do not change at runtime. If identical virtual addresses are 
referenced by different domains, a runtime mechanism indicates which partition is currently 
active and adjusts MMU translation entries. Static MMU configuration entails a static spatial 
separation of the memory resource without support of dynamic memory allocation and 
reallocation for domains. This arrangement is suitable for relatively small, static MILS systems, 
affording a reduction in complexity and thus assurance effort. 

Dynamic memory-management allows reconfiguring the translation tables for domains. This 
does not necessarily require hardware support but might require additional processing cycles 
during switching between the domains. It is more difficult to ensure that domains are properly 
separated and resources are sanitized when using dynamic memory management. However, 
such an arrangement is necessary for larger and for dynamic MILS systems, and the additional 
assurance burden must be addressed. 

There is a requirement to address threats that may exploit caching mechanisms. For example, in 
cache attacks, attacker-controlled code sharing the cache with a designated victim can leak 
confidential data by timing the execution of cache-accessing operations. Another kind of attack 
lures an external, trusted component into indirectly accessing the cache partition of the victim 
and mounts a so-called confused deputy side-channel attack. Recent research shows that the 
isolation enforced by existing defense techniques is imperfect and that generalizing such 
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techniques to mitigate arbitrary cache attacks is more challenging than previously assumed.30 
Effective and efficient solutions to such issues necessarily entail hardware support and likely 
some sacrifices. Such solutions are unlikely to appear in commercial processors until the 
requirement to mitigate cache attacks is more widely shared. 

2.3.2.3 IOMMU 

System software may use hardware I/O memory management units (IOMMUs) to implement 
transparent, isolated access to virtual instances of I/O devices to one or more partitions. An 
IOMMU is intended to prevent arbitrary use of direct memory access (DMA) by certain hardware 
subsystems to access main system memory independently of the CPU. This may potentially 
violate spatial partitioning.  

The IOMMU treats the address in a DMA as an I/O virtual address (IOVA) and maps it to a physical 
address using OS- or hypervisor-provided mappings, blocking the DMA if no mapping exists. 
Transient IOMMU mappings restrict device DMAs to only valid DMA targets. Systems that isolate 
drivers as untrusted out-of-kernel components apply this technique to protect code and data in 
the trusted kernel and in other components. 

If a system’s functionality demands using external DMA-capable devices in addition to those for 
which trusted subsystems are provided, IOMMUs protect the system memory from invalid direct 
memory access triggered by the device and so achieve spatial separation. The task of an IOMMU 
is similar to that of an MMU as both perform address translation, but the purpose is different: 
while an MMU is intended to increase the performance for address translations between virtual 
and physical addresses, an IOMMU is primarily deployed for memory-protection reasons. 

IOMMU-based protection is provided in page granularity, and if I/O buffers reside in the same 
page with sensitive data, devices that are allowed to access a buffer gain access to this data too. 
IOMMU identifiers must be provided securely to prevent such attacks using DMA. One class of 
attacks abuses message signaled interrupts (MSIs) to trigger interrupts that do not belong to the 
device. Another class of attacks uses a vulnerability of peripheral component interconnect (PCI) 
to PCI express bridges, where the identifier is added by the bridge but not by the devices 
connected to the bus “behind” the bridge. IOMMUs may also be compromised making it possible 
to access one domain’s memory from another. Some attacks are intended to bypass IOMMU 
protection. In addition, IOMMUs are not capable of withstanding timing attacks, like exhausting 
bandwidth, interrupt bombing or long uninterruptible bus transactions.31 

                                                       
30 [vSGBR18] van Schaik. Malicious Management Unit: Why Stopping Cache Attacks in Software is 

Harder Than You Think. 
31 [BTL+14] EURO-MILS Whitepaper. 
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2.3.3 MILS Platform Foundational Components 

Early on in MILS the separation kernel was the star of the show, and nearly everyone was focused 
on the separation kernel protection profile32 and the development and use of separation kernel 
products. When a MILS-based system needed to include devices such as keyboards, displays, 
network interfaces or mass storage, they were added to the application architecture ad hoc. 
Since MILS is supposed to be component-based, it was recognized that these should be 
standardized and an initiative was undertaken to specify protection profiles for the subsystems 
managing these devices, so independent efforts could develop and evaluate them separately. 

At the same time there was a need to implement systems having higher level functions and 
policies, such as Multi-Level Security (MLS) by enabling the various components to be composed 
to create more complex systems. Unfortunately, the rather uncoordinated approach for the 
added device components did not provide a practical yet principled way forward beyond 
conceptual presentations. With the existing approach, new components did not compose in the 
ideal way envisioned by Rushby.33 The success of MILS depended on the creation of a COTS 
marketplace for MILS components that can successfully interoperate securely with high 
assurance. This prompted a closer study of MILS component integration and modular platform 
specification that led to the current concept of the MILS Platform as a composition of 
foundational components, and spawned an effort to develop a MILS Integration Protection 
Profile34 (later renamed MILS Platform Protection Profile (MPPP)35) as a framework for functional 
and assurance composition. 

To transform the practice of development of trustworthy systems, it is necessary to offer 
techniques, tools, and technology that is widely applicable, based on standards and a 
compositional certification approach. The required standards need to include but go well beyond 
what is offered by the Common Criteria (CC), though it is attractive to leverage the CC as it is 
perhaps the most well-developed world-wide evaluation and certification infrastructure. The CC 
focuses on security functional and assurance requirements. To succeed MILS needs to specify 

                                                       
32 [SKP07] SKPP. 
33 [Rus08] Rushby. Separation and Integration in MILS (The MILS Constitution). 
34 The MILS Integration Protection Profile (MIPP) concept and commentary was developed concurrently 

with a MILS Network System Protection profile as part of the Secure Interoperability for Real-time 
Embedded Systems (SIRES) and High Assurance Middleware for Embedded Systems (HAMES) projects, 
performed by Raytheon and SRI International for the Air Force Research Laboratory (AFRL) and the AF 
Cryptographic Modernization Program Office (CMPO). Further development of the MIPP was done as 
part of the Research Enabling MILS Development and Deployment (REMDaD) project performed by SRI 
International for AFRL and CMPO. 

35 Development of the MILS Platform Protection Profile and accompanying commentary was 
subsequently further developed by DeLong, MPPP [DeL13b] and Commentary [DeL13a]. 
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functional and assurance requirements for the full range of key system characteristics. To achieve 
MILS’ vision of a commercial marketplace of high-assurance components and associated 
products and services, it is essential that MILS standards extend to architectures, components, 
interfaces, protocols, interoperability considerations. For this reason, nowadays we tend to talk 
about specifications or models rather than protection profiles, which are identified with the CC. 
Specifications include security requirements. Accordingly, as a continuing evolution of the MPPP, 
the Mils™36 Working Group of The Open Group has planned a set of Mils™ standards to include 
a future Mils™ Platform Specification, and specifications for each of the foundational 
components and the Mils™ Platform API. 

The role of the MILS Platform Specification is to create a framework for the specifications of the 
individual components and how they compose. The MILS foundational components are identified 
and their roles circumscribed by the Commentary on the MILS Platform Protection Profile37. 
Properties that the MILS Platform must exhibit, both functional and non-functional, are to be 
derived from the functions and properties of the foundational components and the manner of 
their composition. As the Commentary prescribes, the specifications of the foundational 
components must conform to the MILS Platform Specification. Foundational component 
implementations may be developed and evaluated separately and later composed to create MILS 
Platform instances with confidence. 

The components of the MILS Platform may be thought of as a modular operating system. A high-
assurance general-purpose operating system could be constructed from a separation kernel 
composed with a collection of suitably defined foundational components and a stack of other 
trusted software components running on top. This may be the way that someday the holy grail 
of a high-assurance GPOS will be achieved with MILS. 

Each MILS foundational component creates exported resources of a certain type from other more 
primitive resources. These exported resource types combine to form the vocabulary from which 
policy architectures are constructed. Most of the foundational components own a portion of the 
physical computing resources and create exported resources while managing the physical 
resources so that they are safely and securely shared. They permit information to flow to or from 
a resource only when configured to do so, otherwise the resources are isolated. 

                                                       
36 The Open Group has trademarked Mils™ to differentiate its family of consistent platform, component, 

and API standards for Mils™ from the diverse “reservoir” of MILS concepts and terms found in the 
broader commercial, academic and research MILS community. 

37 Preliminary MPPP [DeL13b] and Commentary [DeL13a]. 
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2.3.3.1 MILS Separation Kernel (MSK) 

The separation kernel is the distinguished foundational component of the composed MILS 
Platform since it is necessary to execute the software portions of the other foundational 
components and to provide the separation kernel exported resources they comprise. The 
exported resources of the separation kernel are presented as a raw, distinct and possibly 
proprietary interface that may be then normalized to a standard API (for example, by the Mils™ 
Platform API considered below). Other foundational components are expected to also be high-
assurance and are likely to use the separation kernel through a high-assurance implementation 
of the platform API, allowing them to share assurance burden with the API implementation and 
to gain portability among proprietary separation kernels. 

For a separation kernel to be suitable for use in conjunction with the other MILS foundational 
components to create the MILS Platform it must conform to the separation kernel role and 
requirements in the MILS Platform Specification. 

2.3.3.2 MILS Network System (MNS) 

Initially viewed only as an operating system kernel, the separation kernel concept has been 
extended to complex networking and heterogeneous environments. The Distributed MILS (D-
MILS) platform extends the MILS platform to include distributed system configuration features 
and a network subsystem. The D-MILS deployment platform enables an application architecture 
to span multiple computer systems seamlessly, with scalable deterministic operation. 

A D-MILS node relies on its separation kernel and a MILS networking subsystem to support its 
integration into the whole platform. Networking and connectivity in D-MILS are not handled at 
the application-level but by the platform. The security, safety and other characteristics of the 
MILS networking subsystem are as important as those of the separation kernel. The requirements 
for the networking components of the D-MILS platform include taking the security and safety 
concerns into consideration from the beginning of the platform and component design. 

Today’s IoT systems evolve to integrate ever more applications, sometimes with largely varying 
requirements on the underlying communication subsystem. Some applications may require short 
latencies, and lossless transmission guarantees, while others do not demand any transmission 
guarantees at all. These differing requirements may lead to the implementation of several 
dedicated communication networks in a single system serving the respective application classes. 

A better approach is a communication platform that uses a single, physical network for all 
applications in a system. This can be achieved by traffic shaping and policing algorithms that 
ensure partitioning of the network and minimizing the effect of messages from applications on 
each other. For messages of highest time and safety criticality, the time-triggered communication 
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paradigm38 can eliminate the effect of other messages in the network completely achieving strict 
time partitioning. The realization developed for the D-MILS Project employs a hardware-based 
Time-Triggered Ethernet (TTE) “backplane” in its MILS Networking Subsystem (MNS).39 Ethernet 
packets in this subsystem are sent over the network at scheduled times and take precedence 
over all other traffic types. The occurrence, temporal delay and precision of time-triggered 
messages are predefined and guaranteed. The realization of the Distributed MILS paradigm for 
the CITADEL Project employs Time Sensitive Networking (TSN) in its MNS. This is a boon for future 
adoption of Distributed MILS since the TSN technology has been made an industry standard, in 
part through the efforts of the CITADEL Project. 

2.3.3.3 MILS Console System (MCS) 

The primitive resources managed by the MILS Console System are human interface devices of all 
kinds, and it uses resources provided by the MSK to export abstractions such as audio 
input/output, display output, graphics, windows, trusted display regions, cursors, positions, 
keystrokes, gestures, trusted path, etc. Examples of the MCS have been implemented for specific 
use cases as discussed in the Frequentis Voice Service use case in Section 4.2.3 and the Trusted 
Smart Phone use case in Section 4.2.4. 

2.3.3.4 MILS File System (MFS) 

The primitive resources managed by the MILS File System are mass storage devices (or virtual 
mass storage devices), and it uses resources provided by the MSK to export abstractions such as 
volumes, files, directories and file systems. An example of the MFS is found in the Trusted Smart 
Phone use case. 

2.3.3.5 MILS Extended Attributes System (MEAS) 

The MILS Extended Attributes System uses resources provided by the MSK and the MFS to bind 
an arbitrary set of attributes with the exported resources of any MILS Platform foundational 
component. The binding has high integrity and may be persistent for persistent resources. The 
attributes may be used for system or application purposes, but is typically used for adjudication 
of access control and other security policies that pertain to the associated resources. A general 
purpose MEAS has not yet been implemented but the demand for flexible high-level access 
control policies and enforcement mechanisms in IIoT and other complex distributed systems is 
spurring research on unified information flow control and access control policies within the MILS 
system context. 

                                                       
38 [KG93] Kopetz. TTP - A time-triggered protocol for fault-tolerant real-time systems. 
39 [D-M13] Requirements for Distributed MILS technology. 
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2.3.3.6 MILS Audit System (MAS) 

The MILS Audit System uses resources provided by the MSK and the MFS to create an audit 
system with audit generation, audit configuration, audit management and high-integrity and 
persistent audit storage. 

2.3.3.7 MILS Platform Interface 

A higher layer of the MILS Platform, above the resource exporting foundational components, may 
include other services, but even these services should be standardized in a modular fashion. Such 
services include file interaction, network interaction, memory management, synchronization, 
cryptographic operations, threading and mathematical functions. These should be specified, 
implemented and assured once-and-for-all over all implementations of the MILS platform 
components. A set of such functions is currently defined by the draft Mils™ Platform API 
Specification40 developed by a collaborative MILS working group within the Real Time and 
Embedded Systems Forum of The Open Group. 

The MILS Platform API as a whole provides a unified and complete interface to the MILS platform 
and the modular packages of the API correspond to and build upon the exported resources of 
the various MILS platform foundational components, while others provide the additional 
functions itemized above. The modularity of the API follows the modularity of the MILS Platform 
itself. Just as the MILS Platform requires, at a minimum, a separation kernel foundational 
component, so too the Mils™ Platform API requires the base package. As other optional 
foundational components are added to the MILS Platform the corresponding packages of the API 
are added. Figure 5 illustrates the correspondence of the Mils™ Platform API packages to the 
MILS Platform foundational components. For this illustration the MILS Platform is taken to be 
composed of a MILS Separation Kernel (SK), a MILS Console System (MCS), a MILS File System 
(MFS), and a MILS Network System (MNS). 

                                                       
40 The Open Group has trademarked the name “Mils” as a variant of the term MILS in order to identify 

its particular family of Mils™ standards. 
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Figure 5: MILS Platform components and corresponding API packages 

As it is intended primarily as a vehicle for the implementation of high-assurance applications, a 
MILS API itself should be implemented with high assurance. Needless to say, it may also be used 
for applications that do not require high assurance, or that are not yet implemented with high 
assurance, but may evolve into high-assurance applications. It may also be used in any situation 
where a small footprint and lightweight runtime environment is preferable to a heavyweight OS 
kernel. As a MILS API raises the level of abstraction, effort invested in its assurance reduces the 
assurance burden for software implemented on it while also bestowing enhanced portability to 
that software. 

The Mils™ Platform API is currently defined as a POSIX profile that attempts to strike a balance 
between simplicity and the rich APIs expected by application developers. In defining a modular 
API, the goal is to adhere to the MILS principle of modularity of the platform, to include only the 
portions of the API that correspond to foundational components present in a particular instance 
of the MILS platform, to provide services suitable for building trusted subjects and to simplify the 
verification of the API implementation and independent compositional verification the 
applications written using the API. 

3 MILS ASSURANCE AND TRUSTWORTHINESS FOR IIOT 

3.1 ASSURANCE 

As stated in the Industrial Internet Security Framework, trust flows down from users to all parts 
of a system in response to being earned through operational experience and a presentation of 
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sufficient evidence to instill confidence that a system will perform as expected with respect to all 
the key system characteristics. 

3.1.1 Assurance for the MILS Platform and a MILS Policy Architecture 

In the MILS approach, the assurance of a deployed policy architecture depends upon the 
assurance of a number of things, including the MILS Platform on which it is deployed. Assurance 
of the MILS Platform is dependent in turn upon the assurance of the individual foundational 
components and upon the assurance of their composition. Compositional assurance allows these 
component assurances to be confirmed at different times, and the assurances to be later 
combined into a system assurance, perhaps in a parametrized fashion, within a complete 
assurance case. Aspects of the MILS Platform assurance case can be constructed once-and-for-
all, such as the foundational component composition argument justified by the MILS Platform 
Specification. The specific assurance case for each foundational component instance 
demonstrates that it meets the requirements levied on it by the MILS Platform Specification. The 
composition of foundational component instances into a MILS Platform instance is a once-and-
for-all construct valid for all application policy architecture instances deployed on the platform. 
A schema for a compositional MLS Platform assurance case is illustrated in Figure 6. Claims for 
the MILS Platform (MP Claims) are justified by an assurance argument having the MP Claims as 
its conclusion derived from a combination of inference rules and supporting evidence. An item 
of evidence employed in such an assurance case may, in turn, be the top-level claim from another 
assurance case. In the figure such is the case for MILS Separation Kernel Claims, MILS Network 
System Claims, and MILS Console System Claims. The top-level assurance case is devised to be 
provisionally valid provided that the assumed evidence items are presented. Claims from 
subordinate assurance cases are substituted for certain evidential items in the platform 
assurance argument. When the claims are independently demonstrated as guarantees the MILS 
Platform assurance case is valid and guarantees the MP Claims. 
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Figure 6: Composition of assurance cases to establish MILS Platform Claims 

3.1.2 Compositional Assurance 

We have seen that there are many aspects to the assurance of a system constructed and analyzed 
according to the MILS architectural approach. Automation of the computation of compositional 
results and the construction and maintenance of the assurance cases for components and 
systems is a vital prerequisite for the practical and economic viability of the approach. 
Fortunately, the theory and tools41 for compositional assurance of static, distributed and dynamic 
MILS systems are now in place for the use cases considered until now. It is to be expected that 
these may need further refinements and extensions as MILS takes on new application domains 
with new requirements and the supporting theory evolves. 

The key system characteristics in which we are interested, including security, safety, privacy, 
resilience and reliability, are emergent properties of a system. These properties arise through 
composition of the system’s components and depend on their properties and the manner of their 
composition.  

In MILS we distinguish between three composition concepts: 

• Composability—A condition whereby components may be composed without affecting 
their individual properties. This is a crucial property provided by the isolation service of a 

                                                       
41 [KAN+18] Koelemeijer. A Model-based Approach to Certification of Adaptive MILS.  
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separation kernel (or the MILS Platform). Components A and B can both be run in isolation 
with neither one impacting the operation of the other.  

• Compositionality—A condition whereby components may be composed in a way to 
create new properties of the composition from their individual properties. 
Compositionality represents the ability to connect two components in such a way that 
their behaviors combine constructively to create a new behavior. 

• Additivity (or Additive Compositionality)—A specific kind of compositionality whereby the 
“addition” of components’ individual but distinct properties are preserved in the 
composition along with their common properties. This concept is required to ensure 
composition of the MILS Platform from the MILS foundational components. 

Reasoning about composition may seem complicated, and it has long been so regarded. In the 
early years of MILS reasoning about composition in MILS policy architectures was only an 
aspiration, but today it is a reality. MILS research projects have adopted and developed tools that 
make such reasoning possible for MILS systems in the standalone, distributed, static and dynamic 
cases. 42 

When reasoning about the composition of components in a MILS policy architecture, to prove 
that the composition provides the needed system properties, a crucial assumption is being made: 
that the refinement of the policy architecture as a concrete system will also exhibit the properties 
proven of the model. Though it is intuitively appealing, this assumption (the refinement 
assumption) cannot be taken for granted. It is necessary to analyze this assumption and confirm 
its validity.  

3.1.3 Assurance Case 

An assurance case structures the reasoning and supporting evidence to justify claims made for a 
system. There are multiple legs to the top-level assurance case for a MILS system. These include 
assurance cases for the assumptions as well as an assurance case for the claim that the policy 
architecture delivers its claimed properties that are needed to meet the system requirements. 
Essential legs of a MILS assurance case are the composition, implementation, deployment and 
platform arguments. 

Because the purpose of MILS is to create assured systems, assurance cases have been an integral 
part of the MILS discussion since the mid-2000s. In the 2010s both the Distributed MILS (D-MILS) 
and CITADEL Adaptive MILS projects pursued policy architecture-driven automated assurance 

                                                       
42 [D-M14, D-M15, CIT18a, CIT18b] Compositional reasoning tools developed for the D-MILS and 

CITADEL projects, for example, allow reasoning over properties expressed as temporal logic formulae 
for modal and parametrized policy architectures expressed in a specification language based on an 
extended subset of AADL. 
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case support as a major activity of the project. The refinement assumption was regarded to be 
valid because van der Meyden’s result43 was already known at the time of the start of D-MILS. In 
both of these projects the composition, implementation, deployment and platform arguments 
are included as sub-arguments of the assurance cases. However, the implementation argument 
was generally not elaborated and the platform argument was only shallowly elaborated because 
these projects treated component verification as a solved problem, and focused instead on 
compositional verification, what had heretofore been unsolved. 

3.2 TRUST BY DESIGN 

The prospect of “trustworthiness by design” has great intuitive appeal though it does not have a 
universally accepted definition or approach.44 MILS is concerned with methodology, techniques 
and tools that can be applied to create an architecture-centric technical design that will assure 
that its implementation will be trustworthy for application-dependent functionality and essential 
system characteristics. As such MILS qualifies as an approach to, and provides a framework within 
which to pursue, trustworthiness by design. It allows a variety of techniques and tools to be 
applied to produce evidence in support of claims for the needed properties and provides a 
unifying framework within which such evidence may contribute. 

The effort and expense needed to attain trustworthiness were first justified only in application 
domains where security or safety characteristics were of paramount importance because of the 
severity of the consequences of a failure to exhibit essential characteristics. Each such domain 
strived to develop a design approach by which the requisite trustworthiness could be achieved. 
“Security by design” and “safety by design” emerged in such domains to provide and more 
systematic and cost-effective way of attaining trustworthiness according to the requirements of 
their corresponding certification authorities. 

“By design” approaches can be applied to most trustworthiness characteristics. For example: 

• Security-by-design is the concept of applying architecture, design and software 
development methods to minimize the security risks connected to information leakage, 
information integrity violation and disruption of authorized access to data early in the 
design process and implementation.45 

                                                       
43 [CvdM12] Chong. Using Architecture to Reason About Information Security; and van der Meyden 

author version, Architectural Refinement and Notions of Intransitive Noninterference. 
44 In some circles “trust by design” or “trustworthiness by design” is used in a way that is quite different 

to that which we consider, instead referring to organizational reputation and trust. 
45 [OWA] Security by Design Principles. 
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• Prevention-by-design is a shift in approach for on-the-job safety. It involves evaluating 
potential risks associated with processes, structures, equipment and tools and accounts 
for the construction, maintenance, decommissioning and disposal of waste material.46 

• Privacy-by-design was initially developed and formalized in a joint report on privacy-
enhancing technologies.47 Privacy must be accounted for throughout the whole 
engineering lifecycle process. It is an example of value-sensitive design, i.e., to take 
human values into account in a well-defined manner throughout the entire process. 

All approaches to making a system trustworthy “by design” have one thing in common. They 
recommend best practices at the architecture and design phase to increase the cost-
effectiveness of enhancements to trustworthiness during the entire lifecycle, in particular 
integration activities and system usage. In some cases, properly implemented design may even 
eliminate the necessity of such enhancements. By identifying an issue, it is possible to make a 
design-time decision about how to eliminate or withstand it. 

With time it has been shown that common methods can replace some of the bespoke techniques 
developed for specific domains. MILS has taken advantage of this potential commonality by 
pursuing a methodology, modeling technique, and verification tools that can support a broad 
range of properties, and at the same time by relying on an evidential tool bus that permits other 
new tools and techniques to be used for the generation of supporting evidence.  

A “trust-by-design” approach does not replace “trust-by-assurance”. Systems that are 
“trustworthy-by-design” still need assurance activities but they are simpler to implement and 
give more guarantees when a “by design” approach was employed.  

The claim that a system is secure- or safe-by-design means that it has properties such as: 

• Separation of functions among the security domains to create simpler, local security 
policies and strengthen assurance guarantees for their implementation. 

• Separation of responsibilities among the security domains to address arising issues with 
a minimal involvement of a human factor. 

• Isolation of resources and creation of domain partitions to enforce access control on a 
default-deny basis and prevent data leakage and data integrity violation. 

• Control of communications between domains allowing for mixing applications and 
components with different trustworthiness requirements. 

• Clear loosely-coupled architecture of trusted computing base allowing for strengthening 
of the security, safety and other assurance guarantees and scaling from local systems to 
networked applications. 

                                                       
46 [SRO+08] Schulte. National Prevention through Design (PtD) Initiative. 
47 [Cav] Cavoukian. Privacy by design. The 7 Foundational Principles. 

https://en.wikipedia.org/wiki/Privacy-enhancing_technologies
https://en.wikipedia.org/wiki/Privacy-enhancing_technologies
http://www.sciencedirect.com/science/article/B6V6F-4S3G8HX-2/2/b4749f31e38e327949d99b974a9705f8
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• Fault isolation to increase system reliability and support its resilient execution. 
• A design that provides diagnosability of the source of faults and failures, analysis of failure 

modes, and the ability to monitor for those. 
• Architectural support for recovery from failures and attacks. 
• Platform-based approach to support system designers with templates, guidelines and 

good practices at all stages of system development criticalities. 

MILS significantly reduces the possibility of undermining a system’s policy architecture during 
detailed design, implementation or maintenance by specifying the architecture separately from 
the design and implementation of the architectural components, and by strongly enforcing the 
architecture, both during development and at runtime. This approach has the beneficial side 
effect of protecting the integrity of the architectural components, so that the architect’s 
assumptions on the behavior and properties of each component cannot be undermined by 
another component, which is essential to the support of trustworthiness aspects by design. 

3.3 TRUST BY ASSURANCE 

Assurance is gained by the collection and analysis of evidence that supports the design, 
construction, deployment and test of the system and its operation. The evidence must support 
the claim that the correct mixture of innate system capabilities and compensating controls has 
been put in place to mitigate risks.48 

MILS takes a compositional approach to assurance, evaluation, and certification. The evaluation 
of a system composed of previously evaluated components can be substantially based on those 
previous evaluations, without requiring the details of all of the components to be reconsidered. 

A MILS policy architecture is a collection of domains interacting with each other. The absence of 
an interaction is as important to the architecture as the presence of one. Some domains, such as 
security services may have strict behavioral requirements specified by the architect because 
these behaviors are necessary for the policy architecture to fulfill its purpose. Such behavioral 
requirements are known as local policies, and the implementations of such components are 
trusted to enforce the specified local policies. Local policies may relate to any kind of local action 
that the architect deems important. Examples include, that a storage component must 
transparently incorporate the backup feature, that the cleartext received at the input of a 
cryptographic component is never passed unencrypted to the output, and that an access control 
decision mechanism renders the correct decision for given parameter values and a given access 
control policy. Some trusted components, such as the access control adjudicator, may be 

                                                       

48 [IIS16] Industrial Internet of Things, Volume G4: Security Framework. 
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recognizable as conventional security enforcement mechanisms, but all trusted components 
enforce some policy, and are treated in MILS as policy-enforcing components. An untrusted 
component is not required to enforce a local policy; thus, it does not require assurance. 49 

Assurance for a MILS system involves four steps: 

• assurance for individual resource-sharing components, such as separation kernels, 
partitioned file systems, and partitioning communications systems that deliver the 
required guarantee of separation (reasoning about noninterference) among exported 
resources created from managed resources, 

• assurance that individual trusted components enforce their specified local policies, 
• assurance that the individual resource-sharing components compose additively to 

enforce the policy architecture (reasoning about policy architecture) and  
• assurance that the individual trusted components, in the context of the policy 

architecture, compose to enforce the required overall system policy (compositional 
verification). 

Systems assurance is the process of building clear, comprehensive, well-defined and defensible 
arguments to justify claims for the safety and security properties of systems. Certain claims are 
supported through reasoning expressed by explicit annotated links between claims, where one 
or more claims (called sub-claims) combine to provide inferential support to a larger claim. 
Certain associations (recorded as assertions) between claims and sub-claims can require 
supporting arguments of their own (e.g., justification of an asserted inference). Claims are 
propositions that are expressed by statements that may be informal, such natural language, or 
formal, such as a semantics-based logic. The degree of precision in formulation of the claims may 
contribute to the comprehensiveness of an assurance case.50 

3.3.1 Reasoning about Noninterference 

Two domains may communicate according to an information flow policy determined by the 
policy architecture. Interference implies any communication with or influence on a domain that 
is not explicitly authorized by the policy architecture for this domain. An example of such 
interference is improper influence on the execution of a component, or invalid modification of a 
component’s state (e.g. using a bypass via a directly mapped device). 

Informally, noninterference between domains means that the execution of one domain does not 
affect the execution of another domain. It demands that each domain’s complete internal state 
is well-defined and determined at all times independent of the processing status and condition 

                                                       
49 [BDRS08] MILS Component Integration. 
50 [Obj18] OMG’s Structured Assurance Case Metamodel 2.0 (SACM 2.0).  
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of the other domain. Noninterference does not presume the total absence of interactions 
between domains but the absence of hidden channels and unspecified information flows.  

To demonstrate noninterference, evidence connected to the lifecycle is needed. 

• The separation kernel and other resource-sharing components provide domain isolation 
and information flow control, supported at the hardware level, thereby increasing 
assurance of the absence of hidden channels and unwanted information flow. 

• All interfaces between the domains are clearly defined and completely and accurately 
described.  

• End-to-end testing of the components and the integrated platform relies on the analysis 
and assessment of the appropriately defined interfaces between the domains and 
guarantees that the existing communication mechanisms cannot be misused.  

• In contrast, vulnerability assessment and penetration testing techniques may consider 
defined interfaces and any other ways that information may flow among domains. 

The MILS approach specifies the architecture separately from the design and implementation of 
the architectural components. This makes the a priori evaluation of the noninterference property 
necessary. The a priori method transfers evaluation efforts from the last steps of system 
development (integration testing, vulnerability analysis) to efforts on separate testing and 
vulnerability assessment of the components with additional focus on their noninterference 
properties. For an initial certification of a composed system the a priori non-interfering 
evaluation methodology will not reduce the evaluation efforts in total. However, it enables 
reusability of certified noninterfering operational components for subsequent non-interfering 
composed evaluations. These components may be composed in newer versions of the composed 
system or in a new composed system having a different policy architecture. 51 

3.3.2 Reasoning about Static and Dynamic MILS Policy Architectures 

Building on the noninterference property proven for the MILS platform, the evaluator considers 
the policy architecture as a base for reasoning about system behavior. 

In a static MILS-based system the configuration for the exported resources of the separation 
kernel and other MILS resource-sharing foundational components is finalized before initialization 
of the MILS application. After initialization there is no creation or destruction of exported 
resources and no changes in the information flow policy. The situations in which static 
configuration of a MILS-based system is adequate are typically simple applications of a small 
number of MILS components provided through a short supply chain. This approach has been 
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applied to safety-critical real-time operating systems and to security-critical systems needing the 
highest levels of assurance. 

The need for adaptability of IoT systems in safety and security critical environments creates an 
additional requirement for development and certification procedures for systems that may 
dynamically change configuration during execution. Dynamic MILS provides low-level 
mechanisms to reconfigure the MILS platform dynamically, including creation and destruction of 
exported resources and changes to permissible information flows, and by interposing above 
these mechanisms a configuration change monitor to enforce a set of configuration change 
constraints that comprise the configuration change policy. The monitor mediates configuration 
change requests performed by a configuration change agent, deciding whether to permit them 
according to the configuration change policy.52 

The constraints embodying the configuration change policy may be examined and approved 
during the system certification process, making configuration change a part of the one-time 
certification, or may be determined while the system is in operation as part of a just-in-time 
certification approach. The configuration change monitor is able to invoke pluggable decision 
procedures to determine whether to permit pending configuration changes.  

Reasoning about Dynamic MILS policy architecture systems is supported by a system adaptation 
framework that includes a certification assurance subsystem that maintains an up-to-date, 
consistent, and always-available assurance case as an embodiment of the presentation of claims, 
arguments and the supporting evidence. The main challenge for the certification assurance 
subsystem relates to the proper creation and maintenance of the assurance case. Techniques 
and mechanisms for generating and managing the evidence needed for certification are also 
needed. These include model checkers, predicate abstractors, decision procedures, constraint 
solvers and other tools. They may introduce assumptions and constraints into algorithms and 
their implementation to maintain the practical solvability of the verification tasks. The task of 
supporting these mechanisms is to make the constraints and assumptions consistent to each 
other and with a goal of verification. 

The evidential tool bus (ETB) is an engine enabling the verification tools to work in tight 
collaboration. The ETB, introduced by Rushby,53 provides a framework for propagating system-
level and inter-component constraints, invoking tools appropriate to the need, enforcing 
standards, checking consistency and providing automated review of evidence as a proxy for 
certification experts.  

                                                       
52 The configuration change monitor is effectively a reference monitor for the configuration state. It has 

been modeled and implemented in CITADEL as a configuration transition system. 
53 [Rus05] Rushby. An Evidential Tool Bus.  
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The essential difference for reasoning about static and dynamic policy architectures is the 
presence of the ETB or similar component in the MILS platform architecture that provides 
automated support for continuous assurance case generation and evidence checking. Two major 
usages for this component are: 

• a priori construction, when the assurance case and evidence is constructed for a future 
system configuration, usually before an adaptation or reconfiguration step is applied on 
the system and 

• just-in-time construction, when the assurance case and evidence is re-constructed for the 
new configurations of the system. 

In both cases, the evidence covers two orthogonal aspects. The first is the correct operation of 
the system in some stable configuration. The second is the correct reconfiguration, for example, 
ensuring that the system transitions only to configurations that are valid. Of course, we also 
ensure that the system behaves correctly during reconfiguration and does not violate security 
and safety constraints. 

An example of the ETB implementation for MILS Policy Architecture assurance is the Adaptive 
MILS ETB (AM-ETB) prototype developed in the context of the CITADEL project.54 From an 
operational perspective, AM-ETB includes a workflow sequencing system that manages 
assurance case and evidence generation as part of a process that results in an up-to-date 
assurance case. Steps of this process are carried out by agents for tools that perform reasoning 
or verification tasks. Results of the process establish higher-level goals through a chain of 
reasoning expressed by assurance case patterns. The AM-ETB gathers the evidence from the tools 
into a database and records the logic of the combination of the evidence to support the assurance 
case claims. 

Assurance case patterns allow the general structure of frequently used argumentation and 
evidence to be expressed independently from the specific details of any particular assurance case 
through abstraction and parameterization. The patterns can then be instantiated and composed 
for the target system by using relevant information. 

Figure 7 shows the overall architecture of AM-ETB comprising a core workflow engine, a database 
including assurance case patterns and evidence, and interface agents to run external analysis and 
verification tools.  
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Figure 7:  The architecture of AM-ETB, an ETB implementation for the Adaptive MILS 
Framework  

3.3.3 Compositional Verification for MILS-based systems 

Development of the assurance case both for static and dynamic MILS Policy Architecture seeks 
to minimize the cost and effort associated with assurance, while ensuring that when required, 
the highest levels of assurance can be demonstrated. Another objective is the support of 
compositionality of independently developed components, because there are many features that 
will be common to MILS-based systems, in particular those achievable by generic components at 
the level of the MILS platform (e.g., services and middleware). It is expected that many common 
application-level components will be created within a MILS ecosystem to leverage development 
efforts and create business opportunities. 

Compositional methods in verification have been developed to cope with the state-space 
explosion problem. These methods attempt to break monolithic verification problems into 
smaller sub-problems by exploiting either the structure of the system or of the property. 
Compositional reasoning can be used in different ways, for example for deductive verification, 
assume-guarantee reasoning, contract-based verification, compositional generation.55  

While an assurance case is the embodiment of the claims and supporting evidence for them, 
assurance case patterns enable reuse and the effective composition of assurance cases along 
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with the underlying argumentation supporting goals.56 This can be successfully applied to support 
compositionality and independently developed components in MILS-based systems.57 A detailed 
and confirmed assurance case for a component can be provided by the component’s developer, 
or if the details are to be retained as intellectual property, the assurance case can be evaluated 
and its claims validated by an independent third party evaluator for use in other assurance cases 
and assurance case patterns. This presents new business opportunities for existing evaluation 
facilities such as Common Criteria Testing Laboratories. 

An assurance case uses a structured set of arguments and a corresponding body of evidence to 
demonstrate that a system satisfies specific claims in respect to its security and safety properties. 
The construction of assurance cases also may rely on a set of assurance-case argument patterns 
to enhance the flexibility of the validation and certification of MILS-based systems. The argument 
patterns specify the requirements to instantiate the claims, and the evidence to support these 
claims for safety- or security-critical components. When constructing an assurance case for a 
system, the argument patterns are instantiated with information concerning the design, 
development, analysis and verification of the system. 

The MILS Platform is designed as a set of components, grouped according to their functional 
purpose (separation-supporting components, services, middleware, operational components, 
monitoring components). These groupings usually contain similar components even for different 
MILS-based systems. Architectural patterns may be established for these groups of components 
and compositions thereof. A composition argument refers to a group of components and an 
argument about their composition. The composition argument for a MILS-based system can be 
created by instantiating appropriate argument patterns. 

To verify that the components in a MILS-based system satisfy their local policies, evidence is 
required to be gathered and assessed. Evidence leaf nodes are therefore included in an argument 
pattern. Additional evidence nodes can be incorporated in the assurance case by adding them to 
the appropriate arguments when instantiating the respective argument patterns. Moreover, 
components may have additional properties such as person, organization, artifact, technique and 
trusted component arguments associated with them, which are also capable of providing 
evidence to support the claims made in the composed assurance case.58 

                                                       
56 [HCAK11] Using a Software Safety Argument Pattern Catalogue: Two Case Studies. 
57 [HKH15] Richard Hawkins, Tim Kelly, Ibrahim Habli. Developing Assurance Cases for D-MILS. Systems. 

MILS Workshop 2015, Co-located with the HiPEAC Conference, Amsterdam, 2015. 
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3.4 ASSURABLE KERNEL AND MILS PLATFORM COMPONENTS 

A security kernel as a reference validation mechanism must be “assurable”. To be able to verify 
a reference validation mechanism that implements the reference monitor59 it must be “small 
enough to be subject to analysis and test, the completeness of which can be assured.” Some 
interpret this as “as small as possible” or by some arbitrary size limit in lines of software code, 
but a well-performing full-featured security kernel may be fairly complex, which makes an 
arbitrarily small size requirement unattainable in practice. What is “small enough” depends on 
the current state of technology available for “analysis and test” that is sufficiently rigorous and 
systematic that its completeness can be convincingly argued. Such capabilities are not constant 
but can change with time, technology and available resources.  

The security kernel is all the hardware and low-level software components for interception and 
control of operations that realize the reference monitor abstraction.60 It implements the 
mechanisms for security policy definition and configuration and has interfaces sufficient for any 
usage scenario. It may have links to other system components and dependencies with external 
mechanisms. The reference monitor may be a part of the system kernel, be identical with it or 
encompass it. 

A security kernel along with other trusted components are parts of the Trusted Computing Base 
(TCB), the totality of protection mechanisms within a computer system—including hardware, 
firmware, and software—the combination of which is responsible for enforcing a unified security 
policy over a product or system.61 As such the entire TCB is a reference validation mechanism for 
the unified security policy and should meet the assurability requirement. 

4 MILS EVOLUTION, EXAMPLES AND CASE STUDIES  

4.1 MILS EVOLUTION AND KEY DIRECTIONS FOR THE FUTURE 

4.1.1 A Whirlwind Tour of MILS 1980-Present 

Inspired by the separation kernel papers of SRI International's John Rushby in the early 1980s, 
the MILS initiative of the early 2000s developed from the integrated modular avionics (IMA) 
design approach. IMA proposes an integrated architecture with application software that is 
portable across an assembly of common hardware modules. An IMA architecture imposes 
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60 [AGS83] S. A. Ames, M. Gasser, and R. R. Schell. Security kernel design and implementation: An 
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multiple requirements on the underlying operating system. The resulting approach was adopted 
by NSA and the Air Force Research Laboratory as advances in microprocessor technology made 
it a more realistic venture. MILS continues to evolve and extend over technology areas requiring 
highly assured security, safety and resilience. 

Advances in MILS methodology and technology, as well as the interests of the involved 
communities, enable us to divide the history of MILS up to the present into four eras. 

4.1.1.1 Pre-MILS Era 1980 ~ 1999 

John Rushby conducted a study of numerous secure operating system research projects 
underway circa 1980, including government funded R&D of formally specified and verified 
security kernel-based operating systems. During his research it became obvious that elaborate 
kernels were being constructed to support relatively simple secure systems. Much effort had 
been put into proof of correctness of kernel enforcement of multilevel security. Paradoxically, 
every practical implementation included software that was related to security but was not a part 
of the kernel, and needed to violate the kernel’s meticulously verified policy enforcement. As 
demonstrated by the Kernelized Secure Operating System in the late 70s, this software may “aid 
the day-to-day operation of the system (e.g., secure spoolers for line printer output, 
dump/restore programs, portions of the interface to a packet switched communications 
network, etc).”62 

Rushby questioned this approach to security kernel development in his seminal 1981 paper.63 His 
alternative approach mimicked the construction of high-assurance hardware devices based on 
physical separation, where functional units were connected explicitly by wires. It is thus easy to 
see what units are connected and which are not connected. The physical architecture reflected 
the logical architecture and the desired policy. Rushby proposed a way to do this in software, by 
isolating functional units and providing explicit connections among them using a mechanism 
having assurance approaching that achieved by physical separation. 

Later, Rushby showed that the verification of enforcement mechanisms for specific security 
policies was simplified by this approach. The Distributed Secure System (DSS)64 separated the 
security concerns of policy enforcement from those of resource sharing and used a variety of 
mechanisms (dedicated components, cryptography, periods processing, separation kernels) to 
manage resource sharing more simply. 
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Beyond security, Rushby proposed separation kernels for safety in 1986,65 and published 
separation, channel control, partitioning, safety and assurance research results continuously 
through the 1990s.66 

4.1.1.2 Classic MILS Era 2000 ~ 2007 

“Classic” MILS emerged circa 2000 on the recognition that commercial partitioning kernels for 
avionic safety could also be applied to security concerns. Strong partitioning (separation or 
isolation) provided a basis for controlled information flow and damage limitation. Leaps in 
processor performance, inclusion of memory management units with smaller processors, and 
emerging support of hardware-assisted virtualization by COTS hardware platforms was an 
additional reason for the propagation of ideas of secure systems based on partitioning. That led 
to the popular rediscovery of Rushby’s separation kernel and then to the development of 
Common Criteria Protection Profiles for Partitioning Kernels by The Open Group67 and Separation 
Kernels by NSA.68 A MILS protection profile issued in 2016 as a whitepaper by the EURO-MILS 
project addresses primarily the operating system as part of a MILS integrated system.69 Funded 
research on MILS by Rushby and others continued at SRI International and elsewhere from 2004 
to 2012.70 

4.1.1.3 Modern MILS Era 2008 ~ 2012 

The term “Modern MILS" was coined by Rushby around 2008 to refer to refinements emerging 
from research ongoing since 2005, including a “two-level view" (the policy architecture level and 
the resource sharing level), MILS foundational components, operational components, the MILS 
platform, and compositional assurance and certification.71 In the Modern MILS paradigm, 
properties of the system are assured according to a given high-level policy in two steps. First, a 
policy architecture shaped by the high-level policy requirements is established and implemented 
by an appropriately configured MILS platform, and second, assuming that the policy architecture 
is properly established by the configuration tools and enforced by the platform, the composed 
properties of the components are checked according to the high-level policy. 

                                                       
65 [Rus89] Rushby. Kernels for Safety? 
66 The complete list of Rushby’s papers is supported by the author at 
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The Modern MILS era saw the development of Common Criteria protection profiles for MILS 
Network and Console System components, work towards a MILS Integration Protection Profile 
(aka MILS Platform PP), and investigations of MILS applications72 and the issues of MILS trusted 
delivery, configuration and initialization.73 It also gave birth to the concepts of heterogeneous, 
distributed and dynamic MILS, which are prerequisites for MILS in IIoT, spurring the “Progressive 
MILS” era. 

4.1.1.4 Progressive MILS Era 2012 ~ Present 

Further refinements and additions to the MILS conceptual landscape of “Progressive MILS” began 
in 2012 to include integration planes, distributed MILS, dynamic MILS, MILS delivery, 
configuration and initialization, the benefits of least-privilege separation kernels, and the use of 
assurance cases that are structured along architectural lines. This period covers: 

• Distributed MILS: assured scalable distributed deterministic systems 
• Dynamic MILS: assured reconfigurable systems, cloud computing, IoT systems 
• Adaptive MILS: assured critical infrastructures, adaptive & resilient systems 
• MILS platform components: separation kernel, network system, and console system 

development 
• Heterogeneous MILS: separation kernels based on heterogeneous processors (CPU, GPU, 

FPGA) and 
• Mixed-Critical MILS: assured mixed-critical cyber-physical systems. 

These MILS developments were advanced through several research and technology development 
projects funded by the European Commission, including D-MILS, EURO-MILS, CITADEL, CertMILS 
and PHANTOM74 projects. These advancements position MILS to address the broad and stringent 
requirements for functionality and trustworthiness levied by IIoT. 

4.1.2 Variations on the MILS Platform 

4.1.2.1 Distributed MILS Platform 

Distributed MILS relies on extensions to a MILS separation kernel and the addition of a MILS 
network subsystem using a hardware-based, time-triggered Ethernet “backplane”. It is possible, 
for the first time, for an application architecture to span multiple computer systems seamlessly, 
with scalable deterministic operation over a set of nodes, opening many new practical application 
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areas for MILS. Automated design and verification assistance, as has been developed and applied 
in the Distributed MILS project, provides development process support and is indispensable for 
the verification of dependable distributed systems.75 System architects, developers, integrators, 
installers, operators, and the organizations and populations that depend on critical systems, 
benefit from the resulting assurances that errors that lead to added cost and dangerous failures 
can be eliminated. 

The Distributed MILS platform comprises MILS nodes that communicate over a deterministic 
network. The requirements to provable domain isolation and information flow controls across 
the platform increase assurance of the absence of hidden channels and unwanted information 
flow. 

A MILS node implements a minimum separation kernel that controls the information exchange 
between the applications and virtualizes hardware resources. The networking system with 
proven fault-tolerant synchronization strategy, e.g. time-triggered Ethernet,76 guarantees 
message delivery and separation. The separation kernel of each node as well as each switch of 
the network is statically configured to realize the distributed MILS policy architecture. In any case, 
the configuration must guarantee the absence of unintended information exchange in the system 
deployed on the distributed MILS platform.77 

The Distributed MILS platform extends to distributed embedded systems by creating in effect a 
distributed separation kernel using deterministic and predictable network communication. In this 
way the Distributed MILS platform provides the capability to use one policy architecture that 
seamlessly spans across multiple MILS nodes. Moreover, time and space separation of the 
Distributed MILS platform might be used to minimize the effect of faults or attacks to certain 
parts of the distributed system, thereby avoiding propagation of harm and increasing resilience.  

One of the running case studies for the D-MILS project was based on demonstrating various 
privacy and security requirements for a prosumer-based smart grid.78 Successful decentralized 
and prosumer-based smart grids need to be at least as dependable and secure as the prevailing 
one-way, generation-transmission-distribution-consumer power grids. A two-phase model-
based design methodology for secure architectural design and secure deployment of such a 

                                                       
75 [D-M] The D-MILS project (2012-2015). 
76 [SAE] AS6802: Time-Triggered Ethernet. 
77 [BQIR14] Distributed MILS Architectural Approach for Secure Smart Grids. fortiss GmbH, An-Institut 
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security architecture on a distributed separation kernel helps to gain assurance on the 
representative privacy properties. These properties are considered for the micro grid case study 
and they can be encoded in terms of information flow properties.79 These encodings help in 
detecting a case where privacy is broken. In such a case an alternative model should be proposed. 
This case study successfully demonstrated that the D-MILS approach is suitable to reason about 
security requirements. 

The D-MILS project established a common framework for critical system construction and 
certification, encouraged innovation with component and service suppliers, and led to improved 
dependability and reduced cost to develop, certify and deploy trustworthy critical systems.  

4.1.2.2 Dynamic MILS Platform 

MILS implementations, including distributed MILS, initially provided only for fixed runtime 
architectures, as they are based on statically configured MILS platforms. That is, the configuration 
information used to configure the exported resources of the separation kernel and other MILS 
resource-sharing foundational components was finalized before initialization of the MILS 
platform. After initialization there was no creation or destruction of exported resources, and no 
changes in the information-flow policy. This is a characteristic shared with safety-critical real-
time operating systems (RTOSes). The rationale, inherited from the safety domain, was that only 
static systems can be adequately understood and analyzed to achieve the required level of 
confidence that they will behave as expected. The approach had also been applied to security-
critical systems needing the highest levels of assurance.  

Two capabilities are required of the platform to enable dynamic configuration change: 
configuration introspection and dynamic reconfiguration primitives. Configuration introspection 
enables a running subject to query the configuration data of the platform. Dynamic 
reconfiguration primitives enable change at runtime to the current configuration of the MILS 
foundational components. To reason about reconfiguration, the use of reconfiguration primitives 
must be constrained by a configuration change policy. Enforcement of the configuration change 
policy is implemented through monitoring the evolution of a dynamic MILS configuration and 
mediating runtime configuration change requests. 

One of the necessary properties of dynamic MILS is the ability to prove that the configuration of 
a MILS system is maintained until it is changed by authorized configuration-change operations, 
and that portions of the configuration that are not the object of a configuration change operation 
are guaranteed to be unaffected by the configuration change provided certain conditions on the 
configuration are met. Fortunately, this is a familiar paradigm for the developers of high-
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assurance secure systems, and the problem is amenable to known verification strategies for it, 
such as property validation by model checking.  

Dynamic reconfiguration entails additional assurance activities. Certainly, for the runtime system, 
system security and safety objectives must be continuously met during operation of dynamic 
MILS systems. Fortunately, the activities for dynamic MILS are not substantially different from 
those for static MILS, provided that a thorough and diligent effort is done for the static case, and 
that certain extensions are provided to the specification language and analysis tools. 

4.1.2.3 Adaptive MILS Framework 

To be resilient, a system must first be adaptable. Trustworthy adaptation requires that a system 
can be dynamically reconfigured without compromising its robustness and integrity. Traditional 
certification practices have conservatively required critical systems to be static and have required 
assessment of the complete integrated system for certification. Adaptability is at odds with 
certification because it changes the system. 

The Adaptive MILS Platform is dynamic, implementing a full and flexible ability to change its 
configuration during runtime. It is adaptive, including mechanisms to monitor its operation and 
its interaction with the environment. It must also include mechanisms that use its dynamic 
reconfiguration capabilities to maintain safe and secure operation, and to fulfill the system’s 
mission in the face of environment change or internal failures.  

The reasons for a reconfiguration vary (e.g., new requirements, component failures or attacks) 
and require input from different internal components of the platform, as well as from external 
agents and the environment. The constraints on reconfiguration may be defined in entirely 
different ways. The global demand for adaptive physical systems with enhanced requirements 
pertaining to their safety and security is increasing due to the rise of the internet of things and 
the sustainable growth of smart industry. All these factors lead to the conclusion that building 
adaptive MILS-based solutions must include the platform, as a combination of hardware, 
firmware and software for resource sharing, and the means to describe system architecture, 
component failures and their propagation, mechanisms for runtime monitoring and adaption, 
and an automated framework in which to state the claims for the adaptive system, expose the 
overall assurance strategy, and track the evidence resulting from analysis of system components, 
using diverse assurance measures and tools. Adaptive MILS refers both to the platform and all 
the necessary artifacts and methodology for building adaptive and resilient solutions.  

The ordinary MILS Platform is a composition of a foundational plane, an operational plane, a 
monitoring plane, and a configuration plane. However, a monitoring plane had not previously 
been implemented as part of a MILS platform and the configuration plane previously consisted 
of off-line configuration tools provided with the separation kernel.  
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The Adaptive MILS Framework developed in the CITADEL project extends the MILS platform to 
dynamic and distributed operation by augmenting the prior MILS Platform’s three online planes 
(foundational, operational, and monitoring), with the online configuration plane, and by adding 
an adaptation plane and a certification-assurance plane. The monitoring plane provides the 
feedback for reconfiguration and becomes an essential part of the adaptation loop (Figure 8). 

 

Figure 8: The generic architecture of Adaptive MILS framework 

Configuration mechanisms (which are provided not only in the configuration plane) implement 
configuration introspection and dynamic reconfiguration capabilities that are essential for the 
support of Dynamic MILS. The supportive mechanisms and overall architecture of the Adaptive 
MILS Framework support safe and secure use of these mechanisms for reconfiguration within 
the constraints of a configuration change policy.  

The implementation of the framework includes a network subsystem that employs a hardware-
based time-sensitive networking (TSN) backplane, dynamic re-configuration primitives, a 
reconfiguration policy enforcement mechanism, platform and environment monitoring. 

The Adaptive MILS Framework covers the following technology areas for the development of 
systems of high criticality that function in complex challenging environment: 

• modeling language for dynamic systems, 
• analysis & verification methods and tools, 
• detection & monitor synthesis, 
• recovery & adaptation methods, 
• Dynamic MILS platform foundation plane, including separation kernel, MILS network 

system,  
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• Dynamic platform configuration plane, 
• Dynamic platform adaptation plane, 
• Dynamic platform monitoring plane and 
• Dynamic platform certification assurance plane & Adaptive MILS Evidential Tool Bus. 

4.1.2.4 Heterogeneous MILS Platform 

As IoT and big data trends go hand in hand, IoT applications start to require more and more 
resources–mainly due to the increase of the amount of data that must be handled and to the 
increase in the complexity of the algorithms used to process it, such as machine learning 
techniques. Data gathered from connected devices can be enriched with social media, video 
analytics, weather and other third-party data and turned into real-time actionable insights. 
Patterns and anomalies detected in real time help to build, manage, and maintain better products 
and services. Managing IoT information with traditional data and analytics often mean operating 
with data that is organized in an outdated way and dealing with complex and specialized systems, 
usually leading to high latency and exorbitant costs. 

This situation has led to an increase of interest in techniques that take advantage of non-CPU 
based computations and efficient parallelization of applications and processes. For example, 
complex analytical queries on large and streaming datasets may be optimized by applying 
computations based on a graphical processing unit (GPU) database approach. GPU databases are 
more flexible in processing different types and larger amounts of data.80 81 Similarly, the field-
programmable gate array (FPGA) technology plays an important role for the future of IoT. Low-
power optimized FPGAs are able to enhance speed and power consumption of several types of 
algorithms compared to microcontrollers of commercial sensor nodes. The architectures based 
on the combination of systems-on-chip and FPGA can play a key role in the future of sensor 
networks and in fields where processing capabilities such as strong cryptography, self-testing and 
data compression are paramount.82 83 

Time and resource optimization is where system or service quality meets trustworthiness. Many 
safety, reliability and resilience aspects are defined through predictable time-based 
characteristics such as response time. Thus, using non-CPU based technologies makes sense for 
trustworthiness aspects. At the same time, the integration of diverse processing technologies 
into a complex mechanism carries a risk of undermining trustworthiness if it cannot be 
convincingly achieved.  
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To make such a mechanism feasible, we consider heterogeneous processors as a MILS platform 
that generalizes the separation kernel concept. It is based on a strict observance of the fact that 
a separation kernel currently is not considered a piece of software that runs on a piece of 
hardware. The separation kernel may be realized as an arbitrary combination of hardware, 
firmware, and software that comes together with modeling and specification languages, tools for 
validation and verification and features for enforcing the bespoke security policies on the 
components interaction.  

There is presently no public information about MILS platform implementations for such 
heterogeneous IoT environments. The demand remains relevant and will only grow. The 
PHANTOM Project84  aimed to enable the development of next generation heterogeneous, 
parallel and low-power computing systems through innovative tools that hide the complexity of 
computing hardware from the programmer, provides a low-level solution to ensure integrity of 
component network execution on the heterogeneous platform based on isolation and 
information flow control inspired by the MILS approach. 

4.2 MILS CASE STUDIES FOR IIOT 

Security, safety, resilience, reliability and privacy may be assured in several ways and with varying 
levels of confidence. The goal of these case studies is to demonstrate how conflicting and non-
trivial concerns may be addressed under growing demands and complexity of IIoT infrastructure. 
These case studies are not intended to cover all industries, nor do they cover all five 
trustworthiness aspects in every case. 

4.2.1 MILS-based security platform for railway command and control systems 

Control, command and signaling are at the core of railway operations. They determine safety and 
performance of the rail network. Railway command and control systems must allow safe train 
operations and meet capacity demands. As these demands and the complexity of railway 
infrastructure grow, the signaling system, its methods for ensuring safety, and factors on which 
it relies, change. In the area of control, command and signaling specifically, we have seen time 
separation (“generation 1.0”); then space separation, by electro-mechanical signals (the absolute 
block principle, “generation 2.0”); and finally track-to-train communication-based signaling, still 
based on block sections (“generation 3.0”). With new capabilities, a fourth generation of railway 
traffic management system enabled by vehicle‑to‑vehicle communication (‘command and 
control 4.0’) will become possible.85 

                                                       
84 [PHA] 
85 [Dop18] Doppelbauer. Command and Control 4.0. 
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To support these changes, the railway infrastructure, proprietary systems and protocols are 
being replaced with IP-based networks and COTS technologies. But there are safety concerns 
because these technologies were not initially designed to be safe and resilient. 

Railway command and control systems implementing the safety logic of digital interlocking 
require assurance of safe and resilient behavior. This assurance may be obtained using a MILS 
design approach as demonstrated, for example, by the HASELNUSS project.86  

The aim of the HASELNUSS project is the development of a customized hardware-based security 
platform for railway command and control systems that provides required security and safety. 
The platform features provisions to ensure system integrity and constitutes a foundation for 
secure infrastructure networking. 

Current signaling systems can be divided into three layers: operation layer, interlocking layer and 
field element layer. These three layers are connected via a wide-area network. 

 

Figure 9: Four generations of control, command and signaling and their basic principles 

Source: 
https://www.era.europa.eu/sites/default/files/library/docs/command_and_control_en.pdf 

Most of the safety systems are located on the interlocking layer, which checks the commands 
from the operation layer for validity and whether they respect the safe operation rules. It also 

                                                       
86 [HAS] 

https://www.era.europa.eu/sites/default/files/library/docs/command_and_control_en.pdf
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monitors the components on the field-element layer for correct operation and in case of 
anomalies, falls into an error state. Systems like the interlocking and the European Train Control 
System (ETCS)87 are located on this layer. 

Components in this layer are developed according to several safety standards like EN 5012688 
and only the required functionality is available. Additionally, these components are built 
redundantly, which means that in case of a defect one of the standby systems comes in place and 
the maintenance personnel is notified to replace the failing component. The data networks and 
the power supplies are redundant too. 

The Haselnuss Reference Architecture (HRA) integrates in railway systems at the field-element 
level as object controllers for field elements. 

Information channels to the safety application are realized using the communication objects 
provided by the separation kernel that allows precise control over the information flows in the 
system. This partitioned architecture based on the certifiable separation kernel that provides 
evidence of non-interference between the high-assurance safety applications (i.e., Safety 
Integrity Level (SIL) 4) and the security applications that do not contribute to the safety of the 
system (and so has a lower SIL). This freedom-from-interference evidence is needed to keep the 
existing certification of safety application when integrated with the security applications. The 
separation kernel is also certifiable at the same assurance levels (i.e., SIL 4) as the safety 
application, e.g., a railway object controller. 

The MILS approach is used to run the critical infrastructure’s safety application(s) on the same 
hardware as the security applications that protect the safety functionality against attacks. Strict 
partitioning of underlying platform resources, particularly in static separation kernels, 
guarantees that one domain cannot demand or use more than its allocation, and separation 
allows defining the exact contact points of information flow between the safety application and 
the security application such as an intrusion detection system. This structures the safety case, 
where the influence of security has to be investigated and freedom from interference with the 
safety has to be proven. 

The Haselnuss reference architecture provides several security functions. This includes mutual 
authentication of Haselnuss nodes with the interlocking system, protecting the software integrity 
of Haselnuss nodes at boot- and run-time, integrity reporting and remote attestation of 
Haselnuss nodes, remote software update of Haselnuss nodes and an intrusion detection system 

                                                       
87 [EURb] European Rail Traffic Management System (ERTMS). 
88 [Eur17] Railway applications Reliability, Availability, Maintainability and Safety (RAMS).  
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(IDS).89 The part of this functionality such as firewall and IDS is implemented in a separate 
network security enhancer installed between interlocking and operational layers.  

The rest is supported at the level of Haselnuss nodes, which can implement the required MILS 
policy architecture due to the use of hardware root of trust and the appropriate software stack, 
secure boot to prevent unauthorized modification or tampering of software and configuration, 
and high-assurance separation kernel allowing running the applications of mixed criticality on the 
same platform. 

 

 

Figure 10:  The place of Network Security Enhancer in the HRA.  

Source: 
http://ifev.rz.tu-bs.de/SiT_SafetyinTransportation/SiT2018/Freigegeben_Katzenbeisser.pdf 

                                                       
89 [BKZ+18] A Reference Architecture for Integrating Safety and Security Applications on Railway 

Command and Control Systems. 

http://ifev.rz.tu-bs.de/SiT_SafetyinTransportation/SiT2018/Freigegeben_Katzenbeisser.pdf
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Figure 11:  Haselnuss node architecture.  

Source: 
http://ifev.rz.tu-bs.de/SiT_SafetyinTransportation/SiT2018/Freigegeben_Katzenbeisser.pdf 

4.2.2 Distributed MILS Platform for Secure Smart Grids 

Smart power grids hope to provide sustainable energy services using bi-directional flow of data 
and power enabled by advanced information, communication and control infrastructure. 
Prosumers are important stakeholders in future smart grids and have a vital role in peak demand 
management.90 

The control of smart grids requires change towards decentralized energy management systems 
with a tight coupling of energy control with new monitoring, processing, optimizing, and 
controlling devices based on real-time information and communication technology. 

To maintain privacy, no prosumer should know the consumption of another prosumer. Assurance 
on this requirement must be demonstrated.91 92 This requirement can be detailed as: 

                                                       
90 [ZMR+18] Prosumer based energy management and sharing in smart grid. 
91 [BQIR14] Distributed MILS Architectural Approach for Secure Smart Grids. In: Cuellar J. (eds) Smart 

Grid Security. 
92 The D-MILS project [D-M] is funded by the European Commission under the 7th Framework 

Programme for Information and Communications Technology. The smart grid case study by Fortiss has 
been supported by Siemens, the EIT ICT Labs, and the Bavarian Ministry of Economics. 

http://ifev.rz.tu-bs.de/SiT_SafetyinTransportation/SiT2018/Freigegeben_Katzenbeisser.pdf
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RQ1: No prosumer is able to bypass the defined communication channels to find out the 
consumption plan of any other prosumer. 

RQ2: No prosumer is able to deduce the consumption plan of any other prosumer with any 
received information. 

The first requirement refers to the low-level implementation of the system. It is enforced through 
separation capabilities of the platform and its configuration by a configuration compiler. The 
configuration files are built from a formal model of the system. A configured platform guarantees 
the absence of unintended communication channels that are not in the formal model. The second 
requirement is ensured by checking that the formal model satisfies a security property. 

The policy architecture indicates how information is allowed to flow between the different 
components of the system. A MILS platform establishes and enforces a security policy defining 
communication channels between components. Consequently, the construction of security 
assurance cases is separated into establishing security of the high-level model and enforcing the 
policy architecture defined by the high-level model through configuration of the distributed 
platform. The MILS platform must have provable domain isolation and information flow controls, 
thereby increasing assurance of the absence of hidden channels and unwanted information flow.  

The distributed MILS architectural approach enables using a single policy architecture that 
seamlessly spans across multiple MILS nodes, as required for demonstrating various security and 
privacy requirements for a prosumer-based smart grid. 

A configured D-MILS platform ensures that the only possible communications are the ones 
defined in the security policy. The configuration compiler is a tool that produces a configuration 
for each node and each switch of the platform. To this purpose, the configuration compiler is fed 
the policy architecture, a model of the platform, and deployment information. Then the 
configuration compiler generates configuration files for running separate partitions and 
establishing the communication channels between partitions according to the policy. Each node, 
except the partitions corresponding the policy architecture domains, contains a dedicated 
partition for hosting a MILS Network Subsystem in charge of the communications over the time-
triggered network (Figure 12). 
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Figure 12:  D-MILS platform 

This level of policy architecture abstraction, to be assured as consistent to the implementation, 
requires an additional level of modeling of the low-level hardware components and topology. A 
hardware topology of Smart Grid demonstrator that comprises computation units (e.g. ECUs, 
cores, etc.), communication units and sensors/actuators, in D-MILS project was represented as a 
logical architecture using a model-based tool AutoFOCUS3. This tool allows modeling and 
validating concurrent, reactive, distributed, timed systems based on formal semantics.93 It offers 
several levels of abstraction whereby the logical and the technical architecture views were used 
for the case under consideration. These models form the starting point for the design and 
implementation according to the D-MILS architectural design and implementation approach. 

The logical architectural view of a system is defined by components communicating via message 
passing through typed channels, using a clearly defined model of computation. Message 
exchange is synchronized with respect to a global, discrete time base. Components can directly 
implement behavior or consist of other components that do so. 

D-MILS platform consists of abstract subjects instead of ECUs and other hardware. Those subjects 
are connected by a communication medium, namely, the time-triggered Ethernet switch. Each 
subject has sensors that represent the interfaces to the data that is received from outside the 
Smart Microgrid system (i.e., a Micro Grid component receives the current energy price and the 
deviation event). The subjects can be on the same machine but do not necessarily have to. 

                                                       
93 http://af3.fortiss.org  

http://af3.fortiss.org/
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Figure 13:  A communication channel in a deployed D-MILS smart micro grid 

The platform guarantees that the information exchanged between components follows the 
channels defined in the high-level model. Each component is only aware of the values received 
on its input ports. For instance, each prosumer can only see the information sent by the Micro 
Grid component, and cannot directly communicate with another prosumer. This (but 
represented in a more formal way) provides ground for certainty about completion of RQ1.  

However, a prosumer may get some information about other prosumers through the microgrid 
component. RQ2 demands that no prosumer can deduce the consumption plan of any other 
prosumer. The implementation is secure if there is no observation that allows a given prosumer 
to deduce the consumption of another one. 

In the theory of knowledge, an agent observes only a part of the system and knows the set of all 
possible traces allowed by the system. If a particular property holds in all possible traces and are 
consistent with the current observation, then the agent knows that this property holds in the 
current execution, thus formalizing this requirement. 

Focusing on the knowledge gained during one exchange of plans and acknowledgements and 
assuming that each prosumer knows the set of possible traces (or, equivalently, the bounds for 
the prosumer plans and the line capacity) further constraints are set on prosumers plans. As 
researchers demonstrate for the case under consideration, if the global contribution of the 
prosumer94 remains within the bounds corresponding to the maximal consumption or 
production, it is not possible to make any conclusions regarding the level of energy consumption 
for this particular prosumer. In this case, the extreme values for each consumption plan in a group 
of three or more prosumers can be reached in several ways, hiding the real consumption value. 

Thus, when representative privacy properties of the microgrid case study are encoded in terms 
of information flow properties, the privacy property is defined through a preliminary encoding of 
facts deduced from the execution traces, which are visible at the input ports. These encodings 

                                                       
94 Contribution is computed by adding non-negative consumption + non-positive production + battery 

usage plan indicating whether the battery will store energy as negative value or provide energy as 
positive one. 
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allowed detecting a case where privacy is broken and propose an alternative model that is more 
secure. The role of MILS approach for this privacy assurance is in the clear identification of the 
reference points for the platform architecture allowing describing the traces and ensuring that 
they fit the necessary constraints. The analysis can be further extended by accounting for the 
history of actions. Ultimately, the privacy property should be stated in term of the quality of 
approximation that a prosumer can obtain from a given observation (if this level of attitude to 
the security and privacy is considered as appropriate for the case). 

4.2.3 Adaptive MILS for Resilient ATC Remote Tower Communications 

Frequentis AG, Austria, has developed MILS use cases for safety-critical communications. The 
first of these, Frequentis Voice Service, developed in the D-MILS project, achieved separation of 
data and voice domains as a demonstration of static distributed MILS. The second, Frequentis 
Communications Service, developed in the CITADEL project, is a demonstration of adaptive MILS 
for resilient air traffic control communication. The demonstration made use of the MILS 
specification and analysis tools to design the demonstration, and of the dynamic MILS platform 
with the CITADEL adaptation framework for its deployment.95  

The concept involves an Air Traffic Control (ATC) control room with remote video surveillance 
instead of out-of-the-window view from a real tower. Radar and cameras provide a high-quality 
real-time image of the airfield and nearby airspace. Sensor data from the airfield and voice 
communication systems complete the capabilities needed to operate a tower remotely, as 
illustrated in Figure 14. The communication flows among these domains are separated by the 
architecture for safety and security. The features necessary for the required communication 
services are provided by the functional elements: Operator Position, Radio and Radio Gateway, 
Radar, CCTV and Sensors. 

Figure 15 a) depicts the components of the Operator Position and Figure 15 b) depicts the 
components of the Airfield Services. 

                                                       
95 [KE19] An adaptive MILS Architecture for Resilient Remote Tower Communication Services. 
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Figure 14: Remote ATC Tower Demonstration 

The Radio Gateway application manages access by the Voice Service to a physical radio for several 
different controller positions. The Operator Position integrates both voice and data applications 
into a single user interface implemented using the MILS Console System (CS). For demonstration 
purposes, basic radio emulation (pre-recorded ATC audio) is used to demonstrate radio 
communication. To test specific inter-component communication flows and evaluate basic 
performance, the deployment of the demonstration includes two operator positions and multiple 
remote sites. 

a) b)  

Figure 15: a) Operator Position; b) Airfield Services 

The following briefly describes the main components that integrate with the CITADEL framework 
(e.g. to initiate a reconfiguration or to receive monitoring data). 

Operator Position: The Operator Position (Figure 15a) provides a graphical user interface using 
the CS and at least one audio device (headset or handset) that connects via USB or an analogue 
interface to the MILS partition that hosts the voice backend (VBE). The CS runs in a distinct 
partition that has access to user interface devices (keyboard, mouse and monitor). Further, the 
CS maintains connections (node internal, black arrows in the figure, to the CITADEL framework, 
via the Console Framework Backend (CFB), to the Voice Backend, and to the Data Backend (DBE). 
Backend business logic manages individual user interface elements (rendered to communication 
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screens) and controls the media engine (VBE only). In addition, backend services maintain 
connections to remote services via the MILS network system (node internal and external, gray 
arrows in Figure 15. The VBE media processing engine or VoIP client requires access to the 
connected audio devices and remote voice services (Radio or Radio Gateway). The DBE requires 
access to remote data services (Radar, CCTV and Sensors) and implements a business logic that 
manages the user interface (rendered to a surveillance screen) and, if necessary, forwards 
messages to remote sites. The CS may also run on a separate node or PC workstation (dot-dashed 
line in Figure 15a). 

Radio and Radio Gateway: shown in Figure 15b, are applications that run on standard Linux. 
Asterisk96 is used to answer radio calls and to start replaying a pre-recorded wav file in the 
demonstration. A Radio Gateway may act as border gateway to a voice communication system. 
Exploiting the MILS Platform’s separation capability, distinct Voice Service and Data Service 
partitions are configured. 

Radar, CCTV and Sensors: Radar, CCTV and Sensors, depicted in Figure 15b, are applications that 
run on standard Linux, e.g. motion97, or dump109098. Motion monitors the video signal from one 
or more cameras and dump1090 is used to capture and display aircraft positions. 

The MILS operational plane of the Operator Position node hosts four applications: The Console 
System, the Voice Backend, the Data Backend, and the CITADEL Framework Backend. The Voice 
Backend consists of two main parts, an HTTP API and a VoIP client for air-to-ground and ground-
to-ground communication. The HTTP API provides GUI components displayed at the console and 
connects to the VoIP client via a POSIX message queue as shown in Figure 16a. This separation 
allows the deployment of individual parts of the VBE for testing purposes. 

 

a)    b)  

Figure 16: a) Voice Backend (VBE); b) Data Backend (DBE) 

The VOIP Client is a headless native Linux application. User Interface (UI) commands to select/key 
a radio or dial/answer a call are sent to the HTTP API service and forwarded to the VoIP client 

                                                       
96 Asterisk: a framework for building communications applications, https://www.asterisk.org. 
97 Motion: https://motion-project.github.io  
98 dump1090: https://github.com/antirez/dump1090, June 2014. 

https://www.asterisk.org/
https://motion-project.github.io/
https://github.com/antirez/dump1090
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part of the VBE. The VoIP client utilizes plain SIP99 and RTP100 as well as domain specific 
extensions to these protocols. The Data Backend, Figure 16b, consists of two main parts, an HTTP 
API and iptables to route/forward data traffic to the configured remote media proxy. The HTTP 
API provides UI components displayed at the console (Figure 17a) and runs as native Linux 
application, iptables is part of the Linux distribution. 

a)  b)

 
Figure 17: a) Console Framework Backend (CFB); b) CITADEL Framework Backend 

The UI (being a video feed, radar data, or sensor data) is loaded via the HTTP API and UDP/TCP 
traffic is forwarded based on iptables rules configured for the DBE. The CITADEL Framework 
Backend (Figure 17b) implements the interface to the CITADEL adaptation plane (AP), a service 
to receive monitoring and status messages from the AP for display on the connected Consoles, 
and a service to permit multiple instances of the CS to be connected to the AP. An example of 
the Console Operations Screen is shown in Figure 18. 

                                                       
99 Session Initiation Protocol, RFC 3261, June 2002. [SIP02]. 
100 Transport protocol for real-time applications, RFC3550, July 2003. [RTP03]. 
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Figure 18: Console Operations Screen 

Increasing MILS capabilities increases complexity necessitating new methodologies. For adaptive 
MILS, a new model based on configuration transitions of a parametrized architecture has been 
combined with adapted components of the Operational Plane (Console System and Backend 
Services). In a remote tower reference system, the use case demonstrates that monitoring for 
failures, in particular, communication failures caused by faulty network components or by 
malicious acts can be detected to trigger automatic or operator-initiated reconfiguration. The 
research results of the CITADEL project can be combined with existing commercial safety-critical 
communications products to yield technology that will increase the capability of future remote 
tower applications. 

4.2.4 Trusted Smart Phone for Enterprise and Personal Communications 

As the Bring-Your-Own-Device approach grows in popularity among mobile workers, so do the 
security concerns of enterprises and individual users. Enterprises are concerned with the 
confidentiality, integrity, and non-repudiation of enterprise data access from mobile devices. 
Individuals are concerned with privacy of use, mobile access to media, the security of mobile 
transactions, and the confidentiality of their personally identifiable information. Commercial-off-
the-shelf mobile device offerings did not provide adequate security for commercial enterprises 
and government sensitive information. The development of bespoke mobile devices for such 
limited markets is costly and impractical. Thus, commercial and government markets joined 
together to develop architectures for COTS devices that could provide the necessary, security 
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and flexibility at a sufficiently low cost that would justify providing the necessary foundational 
capabilities in all COTS devices. 

The purpose of the Trusted Smart Phone use case101 is to develop a smart phone having features 
and security properties that make it suitable for use both as a personal device and as a 
trustworthy enterprise device, and to influence the adoption of key components by the broader 
commercial mobile device market. An imperative of the approach is that the device can be 
marketed as a COTS product that is price, performance, and feature competitive with other 
commodity smart phones, while providing refined ease of use of its dual-use capabilities that 
make it an attractive alternative to having two (or more) single-use phones. Further, users must 
be able to work with familiar operating environments, services and applications without having 
to adapt to new and different interfaces. 

The use of an ARM A9 and A15 processors provides the needed processing power and 
virtualization extensions to host protected domains and enable an architecture that provides 
isolation, resource sharing, and device control with adequate safeguards for network 
applications handling sensitive commercial and secret-and-below government data. The COTS 
device and software offered must provide a rich execution environment to simplify application 
development and controlled resource sharing.  

As illustrated in Figure 19 the Trusted Smart Phone supports (at least) two domains, or 
personalities: one for use in conjunction with an enterprise (commercial or government) and 
another for personal use. Applications of the Trusted Smart Phone include access by government 
personnel to sensitive networks and data with the same device that is used for personal 
communications and applications. Another configuration of a dual-personality smart phone is to 
service two enterprise personalities, such as two distinct government domains. The Trusted 
Smart Phone may be configured with a variety of combinations of personalities. 

                                                       
101 The Trusted Smart Phone described in this use case was developed and demonstrated by SRI 

International, Galois, and Open Kernel Labs using LG smartphones based on ARM Cortex A9 and A15 
processor architectures as part of the USMC Trusted Handheld Program. 
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Figure 19: Personal and Enterprise Modes of Trusted Smart Phone 

For each such combination of personalities, the device user/owner and the enterprise are both 
entitled to reasonable expectations concerning the security functions of the device. The Trusted 
Handheld must provide explicit and unambiguous claims that the user and the enterprise may 
compare to their expectations. Among the most important of these claims is that none of the 
personalities have privileges that supersede the expectation of independence on the part of 
other personalities. Confidence in the validity of these claims is provided to all parties by 
independent, expert third-party validation. The Trusted Smart Phone differentiates itself from 
other commercial devices by providing both the functionality and assurance needed to deploy 
BYOD with confidence and minimal risk. 

The security objectives for the Trusted Smart Phone are: 

• support multiple personalities, some allowed to connect to sensitive networks and others 
connecting over-the-air to the internet, 

• isolate the domains containing each personality to contain the propagation of failures and 
the effects of malware, 

• implement trustworthy security-critical functions, such as confidentiality and integrity of 
data-in-transit and data-at-rest, in a protected way, 

• implement secure boot and initialization and 
• implement non-bypassable platform-wide information flow security policy enforcement. 

Despite the obvious benefits of having to carry only one device, users are understandably 
reluctant to trust a smart phone owned, administered and subscribed by an employer for 
personal communications and applications. This concern is ameliorated if the user can be assured 
that personal use is strongly separated from and impervious to enterprise surveillance. Likewise, 
the enterprise, which can manage its data and communications assets, including the enterprise 
personality on the smart phone will not accept the risk of unauthorized access or tampering from 
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the untrusted and potentially subverted personal mode of a shared user-owned device without 
assurance that its control over the enterprise domain cannot be usurped. Accordingly, to forge 
this multi-party trust relationship, the assurance requirements for the Trusted Smart Phone go 
beyond the ordinary assurance measures for consumer devices. The Trusted Smart Phone: 

• should be amenable to Common Criteria security evaluation according to protection 
profiles appropriate to the needs of commercial/government enterprises, 

• provide trustworthy certification that the concerns of both the device user/owner and 
the enterprise(s) are credibly served, 

• achieve assurance levels commensurate with the value of the assets protected and 
• be commercially competitive. 

To achieve the functionality and assurance objectives the Trusted Smart Phone project embraced 
the MILS architectural approach. The design, implementation, and assurance strategy for the 
Trusted Smart Phone are founded upon MILS principles and practices that had been developed 
and applied to high-assurance systems over the preceding decade. A MILS platform provides the 
foundational layer for the device, which supports the operating systems, system software and 
applications of the operational layer. Figure 20 depicts the operational subsystems of the Trusted 
Smart Phone. 

 

 

Figure 20: Operational Subsystems of Trusted Smart Phone 
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The approach retains the operating environment, services and applications with which the user 
is familiar on existing smart phones, while adding robust resource and device management, 
enhanced security services, policy enforcement and a trusted path for the user to invoke security 
services and to switch among personalities. 

Figure 21 depicts the MILS platform subsystem of the Trusted Smart Phone. One area of great 
concern to those who seek robust security is the device control aspect of the operating system. 
The operating system needs to support various device classes such as sensor devices, block 
storage devices, network interface devices and user interface devices. They also need the 
corresponding device drivers and the complex software stacks that create useful resource 
abstractions from the raw physical resources provided by the device. Each of these software 
stacks, not to mention third-party device drivers, represents complexity that can harbor 
vulnerabilities that can threaten device resources and every other part of the system if it is not 
executed in an isolated domain. Consequently, certifiers demand that security-critical device 
subsystems be in isolated components. This is what the Trusted Smart Phone did with its sensor, 
network, UI and block storage sub-subsystems, following the MILS platform paradigm in which 
such components compose with the separation kernel/hypervisor to form the mobile MILS 
platform. 

 

Figure 21: MILS Platform for Trusted Smart Phone 

The trusted device sub-subsystems are: 

• Sensor sub-subsystem provides access to onboard sensors such as GPS, accelerometer, 
light sensor and magnetometer. 
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• Network sub-subsystem includes and provides access to network interface devices, 
maintaining separation and implementing the policies for sharing of network devices 
among personalities and other subsystems. 

• User interface sub-subsystem includes and provides controlled sharing of the user 
interface devices, provides switching of the UI devices among personalities, provides 
trusted display management, implements a UI device management policy, allows 
invocation of trusted administration and other trusted utilities, and implements the 
trusted path102 function. 

• Block storage sub-subsystem includes and provides access to and sharing of block storage 
devices among personalities, assuring isolation among allocated regions of such storage 
devices. 

The mobile MILS platform supports the overall architecture of the Trusted Smart phone shown 
in Figure 22. The foundational separation kernel is a type 1 hypervisor, the OKL4 Microvisor, a 
commercial version of the L4 verified kernel. It is an important feature of this architecture that 
the OEM version of the normal operating environment is supported for the personal domain. 
This permits the smart phone to keep pace with all of the latest technological capabilities 
essential for competitive differentiation and commercial viability. The OEM’s Android OS is 
supported by its own device driver cell and access to virtual services through client drivers. The 
virtualization capabilities permit the personal OEM OS kernel to run in the personal domain with 
little or no modification, and with exclusive read and write access to personal data storage, and 
transfer of voice and data over-the-air and to virtualized services such the user interface and 
sensors through the platform’s trusted device components. 

The enterprise domain runs a para-virtualized version of Android and Linux adapted to run with 
the OKL4 Microvisor. It provides a user-level end-to-end enterprise VPN service that tunnels 
through a lower level mandatory Data-in-Transit (DIT) encryption system for communication of 
enterprise data. Also serving the enterprise domain are Data-at-Rest (DAR) encryption systems 
for local storage of enterprise data. 

Finally, there is a supervisor domain that establishes and manages the runtime architecture of 
the Trusted Smart Phone. It contains a manager for the partitions or “cells” used to house the 
other domains and trusted sub-subsystems, a global server for the policy that establishes and 
manages the dynamic virtual communication that provides the needed communication channels 
among the components of the architecture, and it provides the secure boot and trusted 
initialization of the system. 

                                                       
102 Trusted path is a mutually authenticated communication path between a user and the trusted 

software. It should be un-spoofable provided the user understands how it operates and how to 
interact with it securely. 
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Figure 22: Design Architecture of Trusted Smart Phone 

The Trusted Smart Phone has demonstrated the feasibility of a trustworthy commodity device 
and the utility of the MILS architectural approach. 

4.3 NEXT STEPS FOR MILS IN IIOT 

4.3.1 MILS Platform Extensions for IIoT 

The MILS Platform for IIoT is an extension of the Distributed Dynamic MILS Platform, 
accompanied by the MILS system configuration tools, an integrated policy framework (discussed 
below) and the Mils™ Platform API. It should also provide the modeling and analysis tools for 
distributed dynamic MILS IIoT systems. 

The approach to IIoT being pursued by MILS could be characterized as Dynamic Distributed MILS 
to the Edge. The realization of Dynamic Distributed MILS to the Edge depends on several 
extensions. 

A micro-separation kernel (micro-SK) and a micro-network system (micro-NS) running on MILS 
micro-nodes near to or at the edge of an IIoT edge computing architecture can participate as a 
full peer in a distributed MILS configuration. The micro-SK/NS in combination with a minimal 
implementation of the Mils™ Platform API is a lightweight version of a conventional MSK+MNS 
MILS node providing an execution and communication environment that can run a single (or 
small number of) MILS subject as though it was running on a larger MILS node. Time Sensitive 
Networking may be used as the network medium when design constraints require deterministic 
communication. Smaller edge devices such as sensors and actuators can be managed by such 
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MILS micro-nodes. Larger MILS nodes can act as edge gateways that offer to MILS micro-nodes 
local cloud services and distributed MILS system connectivity and gateway services. 

The unified policy of an IIoT MILS system may be formulated as a combination of: 

• a global information flow policy that is the policy architecture of the inter-component 
flows, 

• the local policies (programmed behaviors) of trusted components that are critical to 
enable the policy architecture to achieve the required system properties and 

• the configurable local access control policies of distinguished policy enforcement point 
components placed in the architecture to enforce fine-grained access control policies. 

In addition to information flow policies an integration into the MILS Platform of mechanisms to 
enforce application-level access control policies is planned. It is based on the very flexible Next 
Generation Access Control (NGAC) standard103 which provides a flexible framework for specifying 
and enforcing multiple fine-grained attribute-based access control policies. It is suitable to be 
applied in a distributed and heterogeneous setting.104 The NGAC framework has been extended 
with multi-domain policies to enable accesses by subjects in a network domain governed by one 
local access control policy to objects in a network domain governed by another local access 
control policy through a pair of edge gateways. A prototype of multi-domain distributed access 
control based on NGAC was developed for the FAR-EDGE Project.105 An integrated policy 
modeling framework combining the information flow control of MILS policy architectures with 
access control is planned, to be supported by unified policy analysis methods and tools. 

4.3.2 Covering Key Safety Challenges for IIoT 

‘Key Safety Challenges for the IIoT’ published by Industrial Internet Consortium in December of 
2017106 articulates four key challenges unique to IIoT that affect safety characteristics: 

• increased security risks due to an increased attack surface, 
• convergence of IT and OT, 
• pervasive autonomy and 
• inadequate regulatory framework and evolving standards. 

The recommendation for each of the aspects is to enforce the noninterference of IT and OT 
elements that share computing and communications platforms. It refers to the IEC 61508 
functional safety standard, which uses the term “noninterference” or “independence” to include 

                                                       
103 [Int20] Next Generation Access Control. 
104 [HBM+16] Next Generation Access Control for Distributed Control Systems. 
105 [FAR] FAR-EDGE Project (2016-2019).  
106 [ZKHK17] Key Safety Challenges for the IIoT.  
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logical separation while considering both spatial and temporal aspects. Two components are 
logically separated if it is impossible for one component to affect the operation of another, even 
if they share a resource. This whitepaper suggests using separation kernel-based operating 
systems for IIoT applications requiring safety.  

A MILS-based approach is capable of addressing all four key challenges.  

4.3.2.1 Increased Security Risks due to an Increased Attack Surface 

Security risks related to an increased attack surface expand the safety challenge in IIoT systems 
since there is a larger attack surface that adversaries could remotely exploit to cause unsafe 
system behavior. A MILS architectural approach addresses this in two ways: by controlling the 
communication paths and by isolating the domains. MILS reduces the increased attack surface to 
several communication paths and then filters signals from external agents that may cause harm. 
The modular design allows deactivation of domains that fail thus preventing the propagation of 
the faulty behavior. This may be done by a Dynamic MILS implementation that reconfigures the 
system in a way that supports process continuity while avoiding cascading effects, or by simply 
deactivating a component.  

4.3.2.2 Convergence of IT and OT 

MILS mitigates risks associated with convergence of IT and OT through separation of domains. 
Physical convergence involves hosting both OT and IT functions on the same platform. By 
assigning IT- and OT-related functions to different domains with controlled communication, IT 
and OT functions can be split properly while sustaining their joint cooperation. This can be done 
in a networked environment defined by a MILS Policy Architecture.  

Integration between IT and OT implies physical convergence and convergence of expectations 
and mentalities. Many attributes we typically associate with IT systems become associated with 
OT systems and vice versa. The MILS concept does not break down the apparent wholeness of 
the system while keeping its internals properly and safely compartmentalized. MILS technology 
alone cannot change management or operator mindsets but the process of articulating a MILS 
policy architecture should bring IT and OT people together if done collaboratively. 

Safety-critical systems should be developed top-down using rigorous processes (for example, the 
V-model development lifecycle107) for design and implementation through verification and 
validation. Moreover, systems designers should explicitly assign safety responsibilities to each 
system component and consider the control actions a system must implement to avoid unsafe 

                                                       
107 [INC03] Vee Model of Systems Engineering Design and Integration. 
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situations.108 This is simpler for systems with well-defined separation implemented within the 
MILS paradigm. 

4.3.2.3 Pervasive Autonomy  

Autonomy is the ability of the system to make its own decisions with regards to external inputs 
and its changing environment and to be able to continue to operate even if disconnected from 
the network and remote analytics. Autonomous systems in IoT are often practical applications of 
machine learning (ML) and artificial intelligence (AI) techniques. Safety challenges posed by 
autonomous systems are associated with shifting responsibilities of human operators having the 
need to respond to dynamically changing circumstances as well as the inherent unpredictability 
of ML and AI algorithms. The risks of using these algorithms cannot be easily quantified with 
known safety-analysis methods.109 

Human operators maintain safety by detecting an impending unsafe situation and sometimes 
breaking rules by driving the system outside of its envelope or violating some normative rule. 
While the intentional violation of the safety constraint to prevent the more serious damage is 
not an option for current systems, the greater degree of responsibility requires more behavioral 
options for the autonomous mechanisms compared to human-assisted ones. These options 
should be regulated within the whole system behavioral policy that should be validated against 
the invariant-based safety objectives. The approach based on the policy architecture and 
assurance techniques developed for MILS-based systems may be applied for this validation. In 
general, the IoT applications with shifted, transferred and reassigned responsibilities require help 
with responsibility decomposition and assignment to separated components, such as provided 
by MILS. In case of concern or safety failure it is then less onerous to recognize the invalid 
assumptions about safety made by some system component and deliver the appropriate 
additional constraints.  

It is possible to decompose safety considerations according to a “role-based model” of the system 
and mutually constrain the components assigned to different roles. For example, one of the 
domains is responsible for monitoring the whole system for security issues and blocking the 
attacks, and the other domain is supervising the behavior of the first one to avoid blocking actions 
that may affect safety. In other words, we have the roles of security agent and supervisor, and 
their interaction model enforces the separation of duties. The system safety mechanisms usually 
constrain the behavior of “intelligent” ones. At the same time the role of “intelligent” 
components may be to inform the safety mechanisms about the changing circumstances. Based 

                                                       
108 [Lev04] Leveson. A New Accident Model for Engineering Safer Systems.  
109 Verification of ML and AI algorithms is a field of growing interest and activity as witnessed by the 

program of Computer Aided Verification (CAV) conference, 2020, http://i-cav.org/2020/. 

http://i-cav.org/2020/
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on the resulting context, the arbitrating component(s) make decisions about changing the 
configuration of assumptions, rules and constraints to minimize the current operational risks for 
the whole system.  

4.3.2.4 Inadequate Regulatory Framework and Evolving Standards 

Many safety-related standards and regulatory frameworks face the challenge of an increasing 
number of components and interfaces in an IIoT system. Various standards and regulatory bodies 
address important security-related considerations and how they affect safety regulation and 
compliance in IIoT. Both safety and security must be considered.  

Distinguishing policy architecture at the design level validates the implemented policy against 
safety and security objectives including those prescribed by the regulatory requirements and 
standards. MILS facilitates safety and security assurance with the relevant design principles.  

One important desired capability of IIoT system components is “plug & play” interoperability to 
enable systems operators to assemble and integrate a new system quickly. For example, a 
medical provider could combine a set of medical sensors, actuators and control algorithms on 
the cloud to automate the delivery of certain therapies. The compositional approach to safety 
and security assurance for MILS-based systems is currently evolving into a methodology that 
addresses the challenge of certification for such systems.110 This methodology animates the 
contract-based approach, where a component manufacturer specifies constraints on the 
interface(s) of the component(s) that their component is designed to work with. These 
components would actively check that they are being composed with other components whose 
contracts satisfy those constraints. Regulatory submissions would provide evidence and 
arguments that the component behaves safely when composed with other components that 
have been designed for connection using those contracts111 (i.e., that the compositions of 
behaviors described in the contracts are not unsafe). 

  

                                                       
110 [KAN+18]. 
111 [KFP+15] Towards Assurance for Plug & Play Medical Systems.  
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Annex A ACRONYMS AND ABBREVIATIONS 

AADL   Architecture Analysis and Design Language 

AC   Access Control 

AI   Artificial Intelligence 

API   Application Programming Interface 

ARINC   Aeronautical Radio, Incorporated 

BLP   Bell-LaPadula 

CAE   Claims, Argument, Evidence 

CC   Common Criteria 

CITADEL  Critical Infrastructure using Adaptive MILS 

CNSS   Committee on National Security Systems 

COMPASS  Correctness, Modeling, and Performance of AeroSpace Systems (ESA) 

COTS   Commercial off-the-shelf 

CPU   Central Processing Unit 

D-MILS   Distributed MILS 

DMA   Direct Memory Access 

ESA   European Space Agency 

ETB   Evidential Tool Bus (AM-ETB Adaptive MILS ETB) 

ETCS   European Train Control System 

EU   European Union 

FBK   Fondazione Bruno Kessler 

FPGA   Field Programmable Gate Array 

GPOS   General-Purpose Operating System 

GPU   Graphics Processing Unit 

GSN   Goal Structuring Notation 

HRA   Haselnuss Reference Architecture 

IEEE   Institute of Electrical and Electronics Engineers 
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IFC   Information Flow Control 

IIoT   Industrial Internet of Things 

IISF   Industrial Internet Security Framework 

IIV   Industrial Internet Vocabulary 

IMA   Integrated Modular Avionics 

IOMMU  Input/Output Memory Management Unit 

ISO   International Standards Organization 

IT   Information Technology 

KSOS   Kernelized Secure Operating System 

LTL   Linear-time Temporal Logic 

MAS   MILS Audit System 

MCS   MILS Console System 

MEAS   MILS Extended Attributes System 

MFS   MILS File System 

MILS   Multiple Independent Levels of Security (deprecated expansion) 

ML   Machine Learning 

MMU   Memory Management Unit 

MNS   MILS Networking System 

NASA   National Aeronautics and Space Administration 

NIST   National Institute of Standards and Technology 

NKSR   Non-Kernel Security Related [software] 

NSA   National Security Agency 

OCRA   Othello Contract Refinement Analysis (FBK) 

OS   Operating System 

OT   Operational Technology 

PCI   Peripheral Component Interconnect 

PKPP   Partitioning Kernel Protection Profile 
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POS   Partitioning Operating System 

POSIX   Portable Operating System standard 

PT   Page Table 

RTCA   Radio Technical Commission for Aeronautics 

RTOS   Real Time Operating System 

SACM   Structured Assurance Case Metamodel 

SIL   Safety Integrity Level 

SK   Separation Kernel 

SKPP   Separation Kernel Protection Profile 

SLIM   System-Level Integrated Modeling (FBK) 

SoC   System on a Chip 

SRI   SRI International 

TCP   Transmission Control Protocol 

TLB   Translation Lookaside Buffer 

TSN   Time Sensitive Networking 

TTE   Time Triggered Ethernet 

VM   Virtual Machine 

VMM   Virtual Machine Monitor 

xSAP   Safety Analysis Platform (FBK) 
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Annex B GLOSSARY 

Adaptive MILS Framework 
(CITADEL Framework) 

The Adaptive MILS Framework, or CITADEL Framework, 
augments a Dynamic MILS Platform with monitoring, 
adaptation, reconfiguration, and certification assurance 
planes. 

Adaptive MILS system  

 

 

An MILS-based system possessing two main abilities: First, a 
full and flexible ability to change its configuration during 
runtime, which ability is provided by the Dynamic MILS 
Platform; and second, the ability to address environmental 
changes or internal failures by monitoring its operation and 
its interaction with the environment and by adapting to 
maintain safe and secure operation, which ability is provided 
by the monitoring, adaptation and reconfiguration planes of 
the Adaptive MILS Framework.  

Communication policy In a context of MILS-based system, the security policy 
describing the allowed pairwise communications between 
domains. 

Distributed MILS  The ability to transparently deploy a MILS policy architecture 
over a distributed MILS platform while preserving its 
deterministic execution and other specified properties. 

Distributed MILS Platform A set of MILS nodes communicating over a networking 
technology capable of providing deterministic 
communication, such as hardware-based Time-Triggered 
Ethernet or Time Sensitive Networking. Each node consists at 
minimum of a distributed MILS-enabled Separation Kernel 
and a MILS Networking System foundational component. 

Domain (or: MILS domain, 
security domain, safety 
domain) 

A unit of isolation created and maintained in such a way that 
other domains may not interfere with it except in controlled 
ways as permitted by information flow policy. 

Domain separation See separation 

Dynamic MILS A realization of MILS providing dynamic reconfiguration of 
the resources exported by the separation kernel and other 
foundational components of the MILS platform, and their 
permitted information flow relationships. 

Dynamic MILS Platform A realization of the MILS Platform providing the ability to 
dynamically reconfigure the resources exported by the 
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separation kernel and other foundational components of the 
MILS platform and their permitted information flow 
relationships. 

Dynamic MILS policy 
architecture 

The policy architecture for a MILS-based system that may 
change during system operation, usually under the strict 
control of a defined reconfiguration policy and/or a 
configuration transition system.  

Evidential tool bus (ETB) An automated framework that justifies a claim, made for a 
system model in support of certification, by building and 
managing an argument structure and a supporting body of 
evidence generated by a collection of tools that employ 
model checking, constraint solving and other techniques. 

Foundational component A component of the MILS Platform that exports resources 
created from primitive resources and composes with the 
other foundational components to seamlessly enforce 
isolation and information flow control policy on all exported 
resources. 

Heterogeneous MILS A MILS Platform based on an implementation of a separation 
kernel that runs in a heterogeneous hardware, firmware and 
software environment combining various technologies to 
take an advantage of non-CPU based computations (e.g. 
GPUs, FPGAs or ASICs) and parallelization of applications and 
processes. 

Information flow control 
(IFC) 

Procedure to ensure that information transfers within a 
system are not made in violation of the security policy.112 

Isolation 
The ability to keep multiple instances of software separated 
so that each instance only sees and can affect itself.113 

Kernelized architecture A system architecture based on a single central trusted 
component, a security kernel, that can intercept and control 
the system operations in support of a security policy.  

MILS A component-based approach for the construction, 
assurance, and certification of trustworthy systems, which 
emphasizes decomposition, isolation, constrained 

                                                       
112 [NISTSP800-171] NIST SP 800-171 Rev. 1, NIST IR 7298r3. 
113 [NISTIR7298r3] NIST SP 800-190, NIST IR 7298r3. 
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communication according to a policy, and compositional 
verification of system properties. 

MILS Platform A composition of hardware and software foundational 
components that provide isolation and information flow 
control over a set of resources required for the 
implementation of a MILS policy architecture. 

The MILS Platform has its own distinct architecture. 

MILS Policy Architecture A system model comprising a set of abstract entities (active 
subjects, passive objects, communication primitives 
describing permitted interactions) that represents a 
decomposition of the system to achieve both its functional 
purpose and its trustworthiness requirements. 

MILS-based system The realization of one or more MILS policy architectures on a 
MILS platform. 

(Domain) Noninterference  The property of the system with domain separation 
guaranteeing that the execution of every domain does not 
undermine the communication policy for the MILS-based 
system. 

An abstract formal security model for information flow. Of 
particular importance to MILS is intransitive noninterference. 

Operational component A component in a MILS policy architecture. 

Partition A logical unit of separation comprising a set of resources 
created and maintained by a separation kernel. See also 
Domain 

Partitioning The process and the result of splitting the system into 
isolated compartments (domains, partitions) 

Periods processing A technique supporting partitioning by purging a physical 
processing resource of all information from one processing 
period before transitioning to the next processing period to 
avoid leakage of information from the domain served by the 
first processing period to the domain served by the next. 

Policy architecture (MILS 
policy architecture) 

A graph structure, the nodes of which represent subjects 
(active) and objects (passive) exported by a MILS platform, 
and the directed arcs of which represent a relation among 
these resources, designating permitted information flows 
among the related resources implemented by platform-
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supported protected operations. 

The policy architecture represents the system decomposition 
intended to achieve both the functional purpose of the 
system and requirements on its trustworthiness aspects and 
assurance. 

Reference monitor The concept of a system component that mediates all 
references by subjects to objects in a system and ensures 
that these references satisfy a specific security policy. 

Security kernel Hardware, firmware, and software elements of a trusted 
computing base implementing the reference monitor 
concept. Security kernel must mediate all accesses, be 
protected from modification, and be verifiable as 
correct.114 

Security policy 
(security model) 

A set of criteria for the provision of security services.115 

A set of rules that governs all aspects of security-relevant 
system and system element behavior.116 

The set of rules and constraints formally defining what 
controlled operations are permitted (and/or prohibited) or 
what security properties are to be maintained for a particular 
system. A formalized security policy is sometimes referred to 
as a security model. 

Separation a) A synonym for isolation (strict isolation), particularly at the 
inception of its use by Rushby to describe the operation of a 
separation kernel. 

b) The combination of isolation and information flow control 
policies as enforced by a separation kernel. 

Separation kernel a) A specific kind of security kernel that is limited to the 
enforcement of policies of isolation and information flow 
control among exported resources by management of shared 
physical resources to create a noninterference relation that is 
indistinguishable from that provided by a physically 
distributed system. 

                                                       
114 [NISTSP800-53r4] CNSSI 4009-2015, NIST SP 800-53 Rev. 4. 
115 [CNSSI4009] CNSSI 4009. 
116 [NISTSP800-160] NIST SP 800-160v1. 
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b) Hardware and/or firmware and/or software mechanisms 
whose primary function is to establish, isolate and separate 
multiple partitions and control information flow between 
subjects and exported resources allocated to those 
partitions.117 

A MILS separation kernel is the essential base foundational 
component of a MILS platform. 

Spatial partitioning A type of partitioning that compartmentalizes system 
resources in space and maintains data separation, 
information flow control and fault isolation. 

Static MILS A realization of MILS providing only static (not changing over 
time) configuration of the resources exported by the 
separation kernel and other foundational components of the 
MILS platform, and their permitted information flow 
relationships. 

Static MILS policy 
architecture 

The policy architecture for a MILS-based system that does 
not change during system operation, by contrast with a 
dynamic MILS policy architecture. 

Temporal partitioning A type of partitioning that compartmentalizes system 
resources in time by scheduling and processing of various 
types of information at distinct times. 

Trusted computing base, TCB The totality of protection mechanisms within a computer 
system—including hardware, firmware, and software--the 
combination of which is responsible for enforcing a security 
policy. 

  

                                                       
117 [SKPP] U.S. Government Protection Profile for Separation Kernels in Environments Requiring High 

Robustness. Version 1.03. 
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