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We’ve all heard of the myriad cryptocurrencies, such as Bitcoin and Ethereum, which rely on 

distributed ledger technologies (DLTs), such as blockchain, to provide decentralization and 

immutability. Industrial companies are using DLTs for everything from shipping-container 

tracking, vehicle identity and history, to energy trading and farm-to-store tracking.  

But what about the operational impact of these peer-to-peer distributed ledgers on the service 

provider network, for example, in terms of network load? Do certain architectures work better 

than others? Conversely, are there any opportunities for service providers to leverage DLT’s to 

provide additional services or improve on the network’s overall performance, for example, 

managing routing state, user membership information or others? We analyze here how 

blockchains affect a service provider network. 

Types of DLTs running in the network: There are essentially three types of DLTs deployed in 

today’s networks: permissionless (internet-wide cryptocurrencies), permissioned (health, supply 

chain, government) and hybrid. They operate as an overlay using existing IP infrastructure, with 

DLT members, called peers,1 communicating with other peers of the network. When the DLT is 

open to the public larger-scale DLT infrastructure is typically needed, including solo minor peers, 

full peers, light peers, mining pools and a variety of protocols such as Bitcoin, Ethereum and 

Stratum. When a private DLT is deployed, the amount of infrastructure needed to support the 

DLT system is typically less than a public DLT. 

Potential problems: A lot of state information is maintained, and messages transmitted, between 

DLT peers. Transaction information is required to reach all other peers. Bootstrap nodes maintain 

IP addresses and port information of all miners. A new DLT peer needs to download routing 

information, and that needs regular update across all peers. Peers know nothing about other 

peers’ capability to serve requests. Consequently, peers need to contact potential peers, wait for 

a successful connection, then they can enquire about the necessary capabilities. Peers will 

communicate if the capabilities match; disconnect if not. Peers may never reply to a connection 

establishment. Peers map sending of transactions onto single unicast communication.  

This behavior leads to both wasted and inefficient communication. We differentiate between 

them because inefficiency costs the service provider, while wasted communication leads to 

expenditure without successful completion of the intended service communication. It therefore 

affects both service provider and the application using the DLT. This in turn may then lead to 

additional interoperability, scalability and data privacy challenges that need to be addressed. 

Potential opportunities: As network operators address these problems, there is an opportunity 

to develop and offer new services such as a supply-chain integrity, DLT as a service, identity 

 

1 A peer may be a client that issues a transaction to a set of miners or a miner that exchanges information with other 
miners as a part of a transaction. Peers use the same overlay routing information, regardless of the role they have 
in the specific transaction (miner or client). 



Impact of Distributed Ledgers on Provider Networks  

         3 

services, energy trading, smart contracts and integration into a variety of verticals. Some of these 

services will be made more secure by integrating blockchain into IP routing protocols. 

1 LAYERING ARCHITECTURE OVERVIEW 

A DLT aims to power large-scale, decentralized applications and achieve good balance among 

decentralization, scalability and security. A typical DLT architecture comprises the following 

seven layers, as shown in Figure 1. 

 
Figure 1. An overview of DLT system architecture. 

Resource layer includes all the elements that provide CPU, storage and transport network to 

support DLT operations. 

Network layer realizes the needed network technologies for discovering, connecting and 

communicating with each other in a secure manner, e.g., as a DNS+IP, overlay, service routing or 

publish/subscribe solution.  

Transport layer realizes the secure end-to-end communication of session information. 

Session layer records all transactions and blocks as well as maintains users’ accounts. 

Consensus layer implements a consensus protocol such as Proof of Work (PoW), Proof of Stake 

(PoS), Delegated Proof of Stake (DPoS), to reach an agreement among DLT peers regarding DLT 

transactions. 

Contract layer serves as the on-chain computation engine that makes use of a transaction engine, 

such as a virtual machine, to implement smart contracts on DLTs. 
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Application protocol layer contain protocols implemented as a set of smart contracts on a DLT, 

which provide core DLT services such as token management, identity management, storage 

management, decentralized governance and DLT oracle.2 

Application layer addresses effective interaction between a user and DLT by providing user-

friendly interface, DLT wallet, DLT visualization dashboards such as explorer and analytics, 

decentralized finance and other DLT-based apps. 

Peer-to-peer (P2P) networks disseminate system information and maintain decentralization of 

the entire system. This architecture allows participants to exchange digital assets on a global 

scale, without the need for centralized entities or intermediaries. As one of the fundamental 

components of DLTs, the performance of P2P networks has a significant effect on network service 

providers and DLT-empowered applications.  

2 DETAILS OF DLT NETWORK IMPACT 

Characteristics of the DLT P2P network: The topological properties of DLT networks are described 

through its network size and the node degree (the number of peers that communicate with other 

peers for a given DLT transaction). Those characteristics affect the distributed consensus’ ability 

to reach agreement in the face of failures and asynchrony. [1] 

Extensive work has been done to measure blockchain networks. For instance, in [2] [3], 

Ethereum’s topological properties are exposed, and [4] [5] address Bitcoin blockchain properties 

and networking state-of-the-art and challenges. Table 1 summarizes those key properties. 

 Network Size Node Degree Blockchain Size [GB] 

Bitcoin ~ 656191 3  Measured: 47 

Max: 257 

[3] 

348.26 4 

Ethereum ~508467 [2] Measured: 117 [6] 

Max:1000 

262.94 5 

Table 1. DLT Characteristics. 

 
2 A DLT oracle is a service that provides the smart contract, realized by the DLT, with so-called off-chain information; 

that is information that is not stored as part of the blockchain itself. 
3 https://www.blockchain.com/charts/n-unique-addresses [Review: August 2021] 
4 https://www.statista.com/statistics/647523/worldwide-bitcoin-blockchain-size/ [Review: August 2021] 
5 https://blockchair.com/ethereum/charts/blockchain-size [Review: August 2021] 

https://www.blockchain.com/charts/n-unique-addresses
https://www.statista.com/statistics/647523/worldwide-bitcoin-blockchain-size/
https://blockchair.com/ethereum/charts/blockchain-size
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DLT overlay routing entries: To ensure reachability towards any other miner in the overall DLT 

network, an overlay network is established that comprises of IP(v4/v6) end nodes over one or 

more provider networks. For this, overlay routing entries are maintained by each peer, realized 

as an overlay node in the DLT network, for communicating with other peers. Every overlay routing 

entry comprises the following elements:  

• IPv4 address: 32 bits, 

• Port: 2*16 bit (for UDP and TCP port) and 

• ETH ID: 512-bit (to uniquely identify a DLT peer). 

Given the network size identified in [2] (see Table 1), this results in a maximum routing table size 

of 36MB, totaling a maximum of 18TB (36MB times the total network size of 508K) of data being 

sent among the peers of the overall DLT overlay network since (part or all of) this table needs to 

be downloaded by every peer. The table also needs to be maintained upon changes, such as new 

peers, increasing those numbers further.  

DLT interaction patterns: In a DLT network, a new peer must discover neighbors and peers with 

initial information provided through bootstrap nodes before being able to commit transactions 

or mine blocks. For this, a peer, regardless of its role (miner or client), needs to download an 

initial part of the overlay routing table. Then, a miner discovers suitable other miners with which 

to communicate, with a randomized set of first-hop miners, each of which return their next-hop 

miners to the initiating miner. 

A client may then issue a transaction6 into the DLT, again sent to a random set of miners among 

those that have been discovered using the initial overlay routing table, using the same 

randomness mechanism as for the initial peer discovery.  

One of the first transactions for every miner is to synchronize to the latest blockchain,7 using the 

neighbor miners discovered in the previous discovery step. 

The commit transaction will lead to miners committing compute and storage resources for 

executing suitable computations in relation to the smart contract8 that the system is realizing. 

Such resources may realize so-called proofs,9 whose result will be committed to the miner’s 

 
6 A transaction is defined through a command and command-specific parameters, where the execution of the 

command will yield a response to the invoking client.  
7 A blockchain represents the ledger information of transactions that were previously committed to the miners in 

the system.  
8 A smart contract is represented as a state machine of transactions, such as those related to trading 

cryptocurrencies. Achieving consensus in such a (distributed) state machine is represented in the (distributed) 
ledger over the smart contract transactions, where the ledger itself is represented as the blockchain.  

9 Proofs involve computational operations over transaction data provided by clients. Committing computational 
resources to those operations is key to the trustworthiness of the overall consensus achieved by the distributed 
miners. 
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neighbors, discovered in the initial step and using the latest blockchain information obtained in 

the initial blockchain synchronization.  

Ultimately clients may read the latest blockchain as a confirmation from miners, again using the 

randomness methods for contacting a set of miners that may provide said blockchain data. 

The above patterns of initial discovery and transaction commitment to the DLT overlay network 

are realized through a sequence of communication, as illustrated in Figure 2 and reverse-

engineered in this case from Ethereum:  

Figure 2. Ethereum case. 

The first block in the figure deals with 

obtaining the initial list of peers to be 

contacted, for example, to initiate 

transactions or the discovery of 

neighboring miners. Usually, this initial 

list comprises only of a few–perhaps 

dozens–peers.  

The second block deals with discovery 

of the contacted peer, determining 

whether the overlay may respond. Here 

non-reachable peers are filtered out, 

while the initial list of peers is being 

enriched towards the local pool of peers 

being used for transactions later on. A 

typical size of this local pool of peers is 

usually a few thousand (up to 10k), 

significantly less than the overall DLT 

network size. 

To increase this pool size, peers may 

repeat the first and second block with 

repeated requests to the bootstrap 

node for another initial set of peers 

albeit at the expense of the 

communication costs for discovering 

this larger pool.  

The third block establishes a secure transport connection, for example TLS1.2/1.3 mechanisms, 

for any miner previously not contacted, while the fourth block is used for those peers with which 

a transport connection already exists. The final block indicates the actual exchange of the 

command, such as synchronization, discovery and transaction, resulting in a response. The 
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response may well be negative if constraining parameters, such as hash function to be used or 

DLT proof being needed, do not match.  

Given the overlay nature of the DLT network, sending commands is done peer-to-peer by using 

the overlay routing information that was provided to them initially by the bootstrap node and 

enriched through the discovery step.  

Furthermore, DLTs rely on diffusion of the command to a randomized set of miners with unicast 

responses from them being received at the initiating peer. This randomized set of miners is 

determined from the peer-local pool of peers, as determined through the discovery step, while 

the diffusion is controlled through the randomly chosen number N of miners to be contacted 

among those miners that have been successfully discovered.10  

This number N is chosen for any new transaction and any peer attempting to issue a transaction 

to the DLT network. Any failed communication with a miner is compensated by determining 

another miner to replace the failed one. This process of trial-and-error is repeated until the initial 

chosen number N has been reached, which may lead to a significantly larger number of miners 

being contacted.11  

The interaction patterns above exhibit the following aspects: 

• Peers need to obtain initial knowledge of the DLT overlay network (via the bootstrap 

node), enriched by the discovery step to determine the pool of peers with which the peer 

may communicate in the future.  

• The selection of miners, within the discovered pool of peers, to communicate with is 

randomized to provide protection against collusion of a set of miners, while the 

communication between a peer and other miners is realized through repeated unicast 

transfers.  

• Miners may or may not be reachable when being contacted (through their IP address 

information as part of the overlay routing table). For instance, they may reside behind a 

firewall or be switched off. While the first step filters out those peers already in the 

discovery step, transient peers may change reachability even after initial positive 

discovery, leading to failed communication. 

• Miners may or may not provide suitable information (or no information at all), despite 

being reachable. For instance, miners that have been requested to send the latest 

blockchain may not have the information available, and so respond negatively. 

 
10 The number of miners set to be used is determined for each transaction and is represented as the node degree 

presented previously. Each DLT platform employs proprietary algorithms for determining this node degree with 
platforms like Ethereum, for instance, selecting 117 random peers on average [3].  

11 Although the discovery step attempts to filter out those peers that are not responsive, further constraints may 
filter out those discovered peers later on, such as transient peers disappearing after the initial discovery or 
discovered peers responding to communication but not working on the smart contract that transaction relates to, 
therefore negatively responding to the transaction. 
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3 WASTED AND INEFFICIENT COMMUNICATION 

The first two aspects above lead to inefficient communication.12 First, the initial knowledge of the 

overlay network needs to be transmitted to every peer, with systems like Ethereum pushing on 

the order of a maximum of 30GB of data to any new member of the DLT, not accounting for any 

updates to this information. Second, transmitting the command to a set of miners for fulfilling 

the smart contract increases the required network capacity per transaction and therefore the 

cost of transaction.  

Here, the randomization of the miner peer sets per transaction poses a significant challenge for 

using more efficient network technologies, such as IP multicast, since the peer-receiver sets for 

the transaction command change per transaction (and are different per client) and are likely 

different for each initiating peer. Removing those inefficiencies may lead to significant cost 

reductions in operating DLTs.  

The last two aspects lead to wasted communication. Unlike inefficient communication that still 

results in a positive result from a service perspective, though inefficiently, wasted 

communication does not contribute positively to the overall outcome of the service, regardless 

of how (in)efficient it is.  Such wastage affects the completion time and costs of running DLTs due 

to the incurred bandwidth usage and prolonged completion of the transaction when attempting 

to diffuse the transaction to the needed number N of miners, where N is determined as part of 

the DLT diffusion process, as explained before.  

In the following, we attempt to quantify the waste occurring in a DLT system. 

In [2] and [3], the underlying Ethereum topological properties were measured, reporting IP 

addressing issues in the overlay routing entries due to IP aliasing, proxies, firewalls etc. A 

surprising finding was the total wasted communications while executing an operation in the 

Ethereum network, synchronizing, transacting or mining. In a network of ~508467 peers, only 

~73847 peers were active out of which ~10856 were successfully contacted; those represent 

routable peers from an overlay network perspective).  

This results in only 2.13% of all peers being useful. The last facts impact strongly on the actual 

P2P communication since with high probability a number of peers equal to the node degree are 

contacted (Ethereum: 17, Bitcoin:117) out of which only 2.13% are efficient.  

Ethereum synchronization experiment: To deepen our understanding of wasted communication, 

we conducted an experiment to discover miners in the Ethereum network to synchronize the 

entire blockchain (262.94 GB), i.e., executing the first two steps of our DLT interaction patterns. 

 
12 Inefficient communication is characterized by a successful response but inefficient realization of the 

communication leading up to it. For instance, using repeated unicast communication for sending a command to 
set of miners is inefficient (compared to using multicast) but may still be successful in result. 
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We want to estimate the behavior from the entire network G taking samples from the reduced 

network G(W). We know in advance that |G| = ~508k members in the DLT network.  

Our experiment does the following:  

1. Contact the bootstrap node to obtain initial set of miners -> N. 

2. Perform the discovery step with those N miners to get first hop neighborhood 

information.  

3. Then synchronize the latest blockchain over a random selection from the neighborhood 

set to establish oneself as a miner. The samples of responses taken are randomized due 

to the Ethereum’s addressing scheme and its discovery protocol.  

For the installed peer, we use an official go-ethereum release with default configuration, as 

shown in Figure 3: 

Network mainnet 

Version V1.10.2-stable 

Local IP address 77.9.109.90 

Ports (UDP/TCP) 30303,30313 

Bootstrap Nodes 8 (v4UDP Discover Protocol) 

Figure 3. go-ethereum release with default configuration. 
 

The peer was compiled in debug mode with extra loggers in the network layer (go-

ethereum/p2p/netutil/net.go and ../common.go), dialers (../p2p/dial.go), readers 

(../interfaces.go), and discovers (../p2p/discover/v4_udp.go). The client probe interface requires 

no extra configuration. The client uses the Go SDK 1.13.8, mainly UDP Sockets 

(src/net/udpsock.go) and TCP sockets (src/net/tcpsock.go). 

A miner can receive transactions and blocks while executing our steps above, but they are wasted 

since the miner may not have fully synced yet.  

We took samples between February 2021 and July 2021, it means running the go-ethereum’s 

discovery protocol for short periods of time (~1hr/weekend). The peer downloaded ~40GB of the 

entire block chain, in full synchronization mode from a peer as shown in Figure 4.  

The experiment allowed us to discover around five thousand peers, spread globally, as shown in 

Figure 5. 
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Figure 4. go-ethereum peer download. 

 
Figure 5. Five thousand peers spread globally. 

We could classify the peers according to the operations they execute, shown in Figure 6 in regards 

to their global distribution: 

1. Peers that do not reply to the initial PING-PONG, i.e., are not reachable for some reason, 

shown as red triangles. 

2. Peers that executed the steps of PING-PONG, Key Negotiation, HELLO, start sending useful 

data and the data is dropped by the client (unsync peer) are colored in yellow. We 

discovered two reasons for discarding data here: 

a. Possible churn or join latency may lead to received TRANSACTIONS & COMMITs that 

are wasted. In other words, since entire blockchain is 296GB, it is likely that many 

miners may send a blockchain that is not the latest one, which will be discarded.  

b. It may also be that none of the direct nor the discovered peers actually have the latest 

blockchain–particularly a problem if the rate of transaction is larger than the rate of 

replication across the miners’ (replicated) blockchains. 
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3. Peers which are only executing the main signaling, i.e., PING-PONG, Key Exchange13 and 

HELLO, but never engage in data exchange, are colored in green.  

4. Peers which successfully executed our protocol interactions, i.e., the PING-PONG, Key 

Negotiation, HELLO and start sending useful data (blocks or transactions), are colored in 

blue—these are our useful (or good) peers: miners that provide up-to-date blockchains. 

 
Figure 6. Peers classified by operations. 

From our experiment, we can determine that good peers account for only ~16% of all peers (with active 
discovery in ETH). All other peers waste about ~42% of traffic by not providing any useful data.  

Figure 7 and  

Figure 8 illustrate this result from our experiments. 

 
 

Figure 7. Percentage of packets. 

The findings from our experiments show the waste of communication during the discovery step, 

needing to filter out up to 84% of those nodes that are part of the DLT overlay but not responding 

positively to the discovery. This wastes network resources every time the discovery step is 

 
13 The exchange of encryption keys is usually based on available transport protocol solutions such as TLSV1.2 or 1.3; 

most DLTs started enforcing the use of the recent, most secure TLS1.3 for best security. 
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performed by any DLT peer. Also, if previously discovered peers disconnect from another peer, 

another peer must be discovered to replace the lost one, which leads to similar waste than during 

the initial discovery.  

 
 

Figure 8. Percentage of endpoints. 

In addition, successful communication is significantly reduced, and that impacts the DLT service. 

Waste may occur when a peer contacts a previously discovered peer, which cannot provide 

suitable information for the transaction (e.g., by not performing operations for the desired smart 

contract of the transaction).  

Such wasted communication is compensated by issuing the transaction to other miners until the 

desired spread of transactions, as defined by the DLT diffusion process, has been achieved—

those repeated transactions will, however, face the same issues, thereby amplifying waste and 

prolonging the completion time of the overall transaction. This, in turn, impacts the needed 

communication for successfully completing the transaction set, thereby increasing the amount 

of energy per (successful) transaction that needs to be expended, reflected ultimately in the 

overall costs to provide a DLT service.  

Conversely, any avoidance of any such repeated transaction approach would impact the 

trustworthiness of the transaction, since the (successful) communication with all miners (not a 

subset defined by the successful communication that may or may not happen at that time for the 

particular client and its selected miner set) is key to ensuring that the smart contract is being 

successfully realized.  

With that in mind, higher energy and therefore cost expenditure is the direct consequence of the 

waste we can observe when realizing DLTs; an aspect any service provider will need to consider 

in costing the deployment of the DLT service. Conversely, prolonging the transaction completion 

time may negatively affect the DLT application by limiting the maximum rate of transactions for 

a given DLT network size.  
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Note that this consequence of the wasted communication adds to the inefficiencies stemming 

from, for example, the repeated unicast operations to miners for transactions, increasing DLT 

operational costs further. 

4 OPPORTUNITIES OF DLT TO THE NETWORK 

Privacy-preserving computation: Trustworthiness and privacy are primary concerns as companies 

connect their manufacturing and logistic infrastructures to the industrial internet network. They 

want to reap the benefit of automated asset management, process control and predictive 

maintenance. But to do so effectively, companies need to facilitate information sharing among 

trustworthy partners while complying with data protection and privacy-preserving regulations.  

Distributed ledgers offer a viable solution by enabling their participants to discover one another 

and establish peer-to-peer trust relations without a centralized intermediary. Confidential 

computing-based blockchain allows the complex network logic to execute inside a trusted 

execution environment, and preserve the privacy of sensitive networking data. Meanwhile, 

trusted execution attestation can be signed with a secret key protected inside the blockchain-

based confidential computing environment, and the signature can then be verified in a trusted 

way via blockchain on-chain smart contracts. 

This hybrid approach improves privacy on the network-related data and supports a trusted 

verification for network related execution. 

Securing routing protocols: It’s a constant battle to protect network infrastructure from malicious 

attacks. Breaches such as customer records being exposed online, ransomware attacks causing 

disruption of services and Border Gateway Protocol (BGP) route-hijacking cause problems for 

companies across the globe.  

Network protocols, such as the Border Gate Protocol,14 can be made more secure through 

integration of their control plane with blockchain. BGP is the routing protocol that provides 

connectivity through the exchange of routes between the various autonomous systems (ASs) 

throughout the world. Security wasn’t integrated into the protocol, however, and has relied on 

trust between the various internet operators. Various mechanisms have been created to help 

make it more secure such as BGPSec, Mutually Agreed Norms for Routing Security (MANRS) and 

Resource Public Key Infrastructure (RPKI). Other innovative solutions include integrating 

blockchain into routing protocols to secure the database holding the routes and AS numbers to 

prevent tampering. RPKI could, for instance, leverage blockchain in the Regional Internet 

Registries (RIR’s) to ensure the integrity of route ownership by verifying routes in the Blockchain 

prior to sending or receiving the routing prefix of an autonomous system to ensure secured inter-

 
14 https://datatracker.ietf.org/doc/html/rfc4271 

https://datatracker.ietf.org/doc/html/rfc4271
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domain routing in the internet. Or blockchain could be used to secure the distributed network 

topology. These are among various innovations being researched and tested. 

5 PROPOSED SOLUTIONS   

Service providers are not without possibilities when it comes to addressing these problems. 

There are two different angles to address the problems: 

• Are there other technology solutions that may fulfil the application intentions in a 

different, better way? 

• If the answer to this question is no, are there network technologies that could improve 

DLT operations to avoid the waste and inefficiency that we observed? 

We start with two answers to the first question, followed by a solution to improve DLT operations 

through network level innovations.  

DLTs use diffusion of transactions (containing the smart contracts) to a set of miners to realize 

P2P distribution, which in turn leads to the wasteful and inefficient communication observed in 

our experiments. As an alternative, the Identity/Process/Communication/Transaction (IPCT) 

framework relies instead on direct, not diffusion-based, communication.  

 
Figure 9. The identity is tied to the process which, in turn, realizes the transaction. 

As shown in Figure 9, a process owner creates an identity, e.g., for the transaction or generally 

the smart contract, with an identity provider. With this, the identity is tied to the process, which 

in turn realizes the transaction. For said realization, a process provider may assert the identity of 

the process (thereby linking the provider to the specific process) and engage in communication 

with one or more process clients by replying to any incoming transaction requests from process 

clients through suitable responses. 

A number of systems can be used for identity-based realization of transactions through dedicated 

process providers. A web-service-based approach, using identity frameworks such as the recently 
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developed W3C approach on decentralized identifiers (DIDs15) would entirely remove the need 

for any centralized identity provider. Differences in an IPCT realization may be driven by the 

stakeholders realizing it and the roles those stakeholders may want to assume. For instance, if 

relying on an explicit identity provider, this may favor approaches where such entity is required, 

while a DID-based identity approach may favor stakeholders that do not want a logically 

centralized role.  

Not using a randomized set of miners, that may not be in the right state for communicating 

successfully, removes the wasteful communication. This is because the linkage to the contract’s 

identity provides a strong binding between the process client and a possible process provider 

that realizes the transaction. Hence, as long as a process provider for a given identity can be 

found by the IPCT system, successful communication is provided.  

IPCT communication is realized as a P2P unicast communication between a process client and a 

process provider rather than a diffusion-based distribution to a randomized set of miners, 

thereby removing the inefficiencies that come with the unicast replication in DLTs.  

5.1 PUBLISH-SUBSCRIBE SYSTEMS 

Publish-subscribe systems16 17 18 are realizations of the IPCT framework. Here, the identity is 

associated with a topic within an information graph; this graph may be tree-based or it may 

feature more advanced directed acyclic graph (DAG) structures.  

The process-bound communication between the process client and process provider (within the 

IPCT communication model) is realized through a publish-subscribe semantic, where a subscriber 

may request the data associated with a given topic, while the publisher of the topic will ultimately 

provide the data to any subscriber requesting it. For this, a rendezvous system is used that 

matches the interest expressed by the subscriber (in the form of the topic) against the 

announcement of data (under the topic) by any publisher.  

The matching may be future-based as well, so that subscribers may express interest in data 

related to a topic for which a publisher may not yet exist at the time of the subscription. Data 

associated with a given topic may be mutable in that it may change over the course of time, with 

new data versions being sent to all subscribers once becoming available at the publisher(s).  

Data may also be immutable, leading to a single data transfer from a publisher to one or more 

subscribers, after which the subscription may be terminated (since no new data will be 

generated). This difference in data semantics allows for realizing versioning systems, where the 

topic identifies the version of data the subscriber may want to access, or channel semantics, 

 
15 https://www.w3.org/TR/did-core/ 
16 https://streamr.network/ 
17 https://kafka.apache.org/ 
18 https://cloud.google.com/pubsub/ 

https://www.w3.org/TR/did-core/
https://streamr.network/
https://kafka.apache.org/
https://cloud.google.com/pubsub/
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where the topic identifies a channel of communication over which data is frequently streamed 

from the publisher to one or more subscribers. 

Publishers may not be the owner of the data, following the separation of process owner and 

process provider in the IPCT framework. Publishers may simply provide (even encrypted) data, 

ensuring the delegation of the provisioning task through appropriate certification of the topic, 

such as using certificate-bound topic names or tying the encryption of the data into the 

certification authority of the process owner.  

Communication from the publisher to the set of subscribers may be realized through successive 

unicast, similar to how DLT peers communicate in existing IP networks, or through utilizing 

network-level multicast with the publisher sending a single data item that is received by all 

subscribers. When utilizing, for instance, IP multicast techniques for the network-level realization 

of such multicast, topics and subscriber sets must be relatively long-lived due to the significant 

group membership costs in IP multicast. For that reason, most publish-subscribe systems utilize 

unicast replication instead.  

While this may inefficiently realize duplication to more than one subscriber, the publish-

subscribe system does not rely on diffusion for information distribution since each subscriber 

explicitly subscribes to the topic and therefore the data that is associated with it. As a 

consequence, wastage, as observed in DLTs, does not occur. Conversely, the needed trust 

relations between publishers and subscribers require the use of (often centralized) certificate 

systems, unlike the diffusion-based DLT system, which allows for untrusted peers to 

communicate as part of the distributed consensus process realized in the DLT. 

5.2 CONSTRAINT-BASED SERVICE ROUTING   

Routing in the internet today is realized through the internet protocol, using locator-based 

addresses to forward packets from a source to a destination. Additional information, such as 

ports and service-protocol-specific information (such as URLs), are used to invoke service 

interactions. The DLT interaction patterns constitute service interactions with miners in a DLT 

providing their services to other miners and clients alike, while the needed IP locator information 

and port information of every miner is provided to peers of the DLT during the bootstrap process 

for routing DLT interactions.  

Service routing19 advocates forwarding packets based on service, rather than locator information. 

Here, services are identified in so-called service requests, with the forwarding operations leading 

to packets being sent to one of possibly many network locations where service instances realize 

the identified service. Service routing also supports multicast invocation by sending the service 

 
19 René Glebke, Dirk Trossen, Ike Kunze, Zhe Lou, Jan Rüth, Mirko Stoffers and Klaus Wehrle, „Service-based 

Forwarding via Programmable Dataplanes“, Workshop on Semantic Addressing and Routing for Future Networks, 
2021, available at https://hpsr2021.ieee-hpsr.org/sarnet-21/  

https://hpsr2021.ieee-hpsr.org/sarnet-21/
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request to more than one service instance at the network level, thereby reducing inefficiencies 

in one-to-many invocation as they occur in DLTs.  

Service-specific constraints can be advertised together with the service identifier, ultimately 

aiding the selection of the ‘best’ (in terms of those service-specific constraints) service instance 

from the set of available ones; the overall solution for such routing is termed constraint-based 

service routing (CBSR).  

To support service interactions that build ephemeral state20 after an initial service request, CBSR 

uses standard IP routing where clients continue to interact with a specific service instance 

through its IP address rather than initiating a new service request; we term requests that are tied 

to an interaction state an affinity request. Should the client want to communicate again with any 

service instance, it issues again a service request, possibly leading to an interaction with another 

service instance of the same service it interacted before.  

CBSR can be deployed in existing IPv6 networks by utilizing IPv6 Extension Header for capturing 

the service identifier and constraint information, while CBSR-enabled routers (CSR: Constraint-

based Service Router) may be deployed in a shim layer between transport and network (here 

IPv6) layer. CBSR may even be deployed across domains, using the existing internet to 

interconnect between those domains.  

The paradigm of routing service requests instead of locator-addressed IP packets can significantly 

reduce wastefulness observed in DLTs. For this, we first interpret all miners as service instances 

of a DLT service, for example, mydlt.org. With this, a peer issuing a service request to mydlt.org 

will now communicate with any other miner that has previously announced its willingness to 

serve requests for the DLT service.  

Service communication can now take place without any of the usually required bootstrapping of 

the DLT overlay network, thereby removing the need for any peer to download GBs of overlay 

routing data. Instead miners solicit their participation in the DLT to the (CBSR-enabled) network, 

while peers can issue requests immediately without the need for downloading any (overlay) 

routing information. Unlike the discovery process in an overlay-based DLT, which determines a 

small subset of all peers in the overlay DLT, a peer in CBSR will be able to use all other peers in 

the DLT diffusion process, thereby using a larger potential resource pool for its transaction. 

CBSR also removes the disconnections that can be observed in the DLT discovery process. This is 

done by expressing the aspects, which cause miners to disconnect as constraints that are 

accounted for when selecting one of many service instances during (CBSR) forwarding 

operations. For instance, the constraint of wanting to communicate with a miner that provides 

 
20 Ephemeral state may be created in a service transaction as a result of the initial transaction, then used in 

subsequent transactions. Ephemeral state has usually a limited lifetime, bound to a sequence of transactions in 
which it is used, while outside of those transaction, the state is no longer needed. 
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GPU support can be expressed in CBSR as a capability constraint, against which service requests 

can be matched so that only miners are contacted that have previously solicited support for GPUs 

in their service announcement.  

The same applies for other capabilities, such as support for specific hash or security functions. As 

a consequence, the filtering of good from bad peers during the discovery process is not needed 

at all, allowing a peer to communicate directly with other peers, leading to communication with 

only those that will respond according to the constraints they have advertised.  

Most importantly, such constraints can also be dynamic (by associating timeouts to their validity 

and being re-advertised as new constraints once changing at service level). This ensures that 

peers send transactions only to miners currently working on the same smart contract with which 

the initiating request is associated.  

Although those constraints are dynamic and therefore race conditions may occur (requests are 

being sent to a miner having indicated support for smart contract X, while said miner has already 

advertised that it has moved to smart contract X+1), simulations have shown that such conditions 

are rare and matching peer requests with suitable miners working on the relevant proof will 

happen almost all the time.  

Through this expression of aspects that lead to disconnections in current DLTs as constraints in 

CBSR, wasteful communication is almost entirely reduced to zero, leading to  

• Improved usage of network resources by removing the need for explicit overlay routing 

downloads. 

• Avoidance of failed communication with DLT miners by explicitly capturing the 

constraints21 leading to successful communication in the CBSR routing decisions, 

removing the need for filtering out the good nodes during the discovery step in the 

overlay DLT. 

• Improved information resilience by achieving the required number of DLT interactions for 

the desired resilience level in shorter timeframe than existing DLTs over IP networks. 

• Faster convergence time, if defining a desired level of resilience, contrasted against the 

need for repeated communication in existing DLTs until the needed number of DLT 

interactions has been successfully completed.  

The use of the service routing model further removes the inefficiencies identified in DLTs, 

specifically the need for pushing DLT overlay information to every client and miner alike, while 

 
21 For this, we differentiate static from dynamic constraints. The former represent, for example, the support for 

specific security features or HW capabilities, while the latter represent the commitment to specific smart contracts 
and therefore the ability to serve transactions that are related to the smart contract the client or miner is referring 
to in its transaction.  
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also supporting efficient network-level multicast. As a result, efficiency and therefore overall cost 

of communication is further improved, in addition to tackling wasted communication. 

6 CONCLUSION 

The increasing use of DLT has led us to question the possible impact on provider networks. 

Looking closer at the interactions in a typical DLT, we have observed that inefficiency and waste 

are important factors that may negatively impact further adoption of DLTs. Understanding the 

reasons behind both is paramount for thinking of alternatives, both for the use of DLTs (if that is 

possible within the remit of the considered application) and the realization over provider 

networks through novel network solutions.  

This whitepaper serves as a starting point for a wider dialogue on the use and impact of DLTs, the 

relation with and use within provider networks, and the opportunities for addressing the 

identified problems.  
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